文章标题:基于PCA-PSO-SVM的地震死亡人数预测模型研究
文章作者:刘立申, 王晨晖*, 王利兵, 陈凯男, 吴鹤帅
关 键 字:地震死亡人数;主成分分析法;粒子群算法;支持向量机
文章摘要:为准确预测地震死亡人数,提出了基于主成分分析法(PCA)和粒子群算法(PSO)优化的支持向量机(SVM)模型。首先利用主成分分析法对地震死亡人数7个影响因子中的6个进行数据降维,同时对第7个发震时刻因子单独进行区间分类,然后对提取出的主成分进行归一化处理,将归一化的主成分数据作为支持向量机的输入向量,通过粒子群算法寻优获得最优支持向量机模型参数,最终建立基于PCA-PSO-SVM的地震死亡人数预测模型,并对5组样本进行死亡人数预测,同时对比分析包含和不包含发震时刻因子的2种情况下的模型预测效果。结果表明:在不考虑发震时刻因子的情况下,使用PCA-PSO-SVM模型的最小误差、最大误差和平均误差分别为0.85%、20%、10%,其平均误差相比PSO-SVM、SVM模型分别降低2.08%、2.28%;输入向量加入发震时刻因子分类数据后,PCA-PSO-SVM模型的最小误差、最大误差和平均误差分别为0.25%、20%、7.18%,其平均误差相比PSO-SVM、SVM模型分别降低3.34%、3.50%。因此,加入发震时刻因子后3种模型的平均误差明显降低,同时由于PCA-PSO-SVM模型进行主成分降维处理,能够明显提高运行效率和预测精度,故降低了模型复杂度。