针对三维波动弹性动力方程推导谱元法算法,考虑三维真实地形及介质的衰减特性,基于并行计算环境,采用谱元法和etop1'数据,对首都圈一个4.7级地震的地形效应进行模拟。模拟结果表明,在考虑地形效应情况下,模拟台站记录与实际观测记录更为一致,地形对地震波速度竖直分量的影响要大于两个水平分量,高PGA区域多分布于山顶与山脊;与平坦地形相比,PGA相对地形放大系数为-20.4%-174.6%,不同地点的垂直向速度及加速度分量波幅遵循峰顶、山脊得到放大的模式。与已有二维模型计算结果相比,三维真实地形对地震动的影响更为复杂。
The effects of topography on seismic ground motion of an MS 4.7 earthquake in Capital region were simulated based upon elastodynamic equation for 3D wave propagation, the spectral-element method, parallel computation environment, incorporated realistic 3D topography and attenuation of media. The simulated results show that the simulated time series is consistent with the recorded data much better; topographic effects due to great rough terrain on vertical components of seismic wave are bigger than those on two horizontal components. Large PGA values are almost located near mountain tops and ridges. Compared with the model without topography, the relative topographic amplification factors of PGA in the zone near the epicenter are -20.4%-174.6%, while the Z velocity component at different sites are in accordance with the pattern of amplification on mountain tops and ridges, and there is a decrease in valleys and brooks. It can be concluded that the effects of 3D realistic topography on seismic ground motion are more complex than those of the existing 2D generalized mode1.
2017,38(1): 7-14 收稿日期:2014-10-31
DOI:10.3969/j.issn.1003-3246.2017.01.002
基金项目:中国地震局地球物理研究所中央级公益性科研院所基本科研业务专项(项目编号:DQJB12B17)
作者简介:廖力(1983-),男,四川人,助理研究员,主要从事地球动力学数值模拟相关研究工作
参考文献:
高孟潭,俞言祥,张晓梅,吴健,胡平,丁彦慧. 北京地区地震动的三维有限差分模拟[J]. 中国地震,2002,18(4):356-364.
胡元鑫,刘新荣,罗建华,等. 汶川震区地震动三维地形效应的谱元法模拟[J]. 兰州大学学报(自然科学版),2011,47(4):24-32.
李鼎容,彭一民,刘清泗,谢振钊,童有德. 北京平原区上新统-更新统的划分[J]. 地质科学,1979,4:342-350.
刘昌铨,杨健. 京津及其外围地区地壳速度结构的初步探测[J]. 地震学报,1982,4(3):217-226.
宋松岩,周雪松,张先康,宋建立,龚怡,王椿镛. 泰安-忻州剖面S波资料解释及其与邢台地震的相关性分析[J]. 地震学报,1997,19(1):13-21.
孙若昧,赵燕来,吴丹. 京津唐地区地壳结构与强震的发生:Ⅱ. S波速度结构[J]. 地球物理学报,1996,39(3):347-355.
Komatitsch D and Tromp J. Introduction to the spectral-element method for 3-D seismic wave propagation[J]. Geophys J Int, 1999, 139(3):806-822.
Komatitsch D and Tromp J. Spectral-element simulations of global seismic wave propagation-I. Validation[J]. Geophys J Int, 2002a, 149(2):390-412.
Komatitsch D and Tromp J. Spectral-element simulations of global seismic wave propagation-II. 3-D models, oceans, rotation,and self-gravitation[J]. Geophys J Int, 2002b, 150(1):303-318.
Graves R W. Simulating seismic wave propagation in 3D elastic media using staggered-grid finite differences[J]. Bull Seism Soci Am, 1996, 86(4):1091-1106
http://www.globalcmt.org/cgi-bin/globalcmt-cgi-bin/CMT4/form?itype=ymd&yr=2012&mo=1&day=1&oyr=1976&omo=1&oday=1&jyr=1976&jday=1&ojyr=1976&ojday=1&otype=nd&nday=365&lmw=0&umw=10&lms=0&ums=10&lmb=0&umb=10&llat=38&ulat=42&llon=116&ulon=120&lhd=0&uhd=1000<s=-9999&uts=9999&lpe1=0&upe1=90&lpe2=0&upe2=90&list=4 (last accessed 2014.10.12)
Komatitsch D, Liu Q, Tromp J, Süss P, Stidham C and Shaw J H. Simulations of ground motion in the Los Angeles basin based upon the spectral-element method[J]. Bull Seismol Soc Am, 2004, 94(1):187-206.
Lee S J, Komatitsch D, Huang B S and Tromp J. Effects of topography on seismic wave propagation:An example from northern Taiwan[J]. Bull Seismol Soc Am, 2009, 99(1):314-325.
Lee S J, Chen H W, Liu Q, Komatitsch D, Huang B S and Tromp J. Three-dimensional simulations of seismic wave propagation in the Taipei basin with realistic topography based upon the spectral element method[J]. Bull Seismol Soc Am, 2008, 98(1):253-264.
Magnoni F, Casarotti E, Michelini A, et al. Spectral-Element Simulations of Seismic Waves Generated by the 2009 L'Aquila Earthquake[J]. Bulletin of the Seismological Society of America, 2014, 104(1):73-94.
Nguyen K, Gatmiri B. Evaluation of seismic ground motion induced by topographic irregularity[J]. Soil Dynamics and Earthquake Engineering, 2007, 27(2):183-188.
Olsen K B, Pechmann J C and Schuster G T. An analysis of simulated and observed blast records in the Salt Lake basin[J]. Bull Seismol Soc Am, 1996, 86:1 061-1 076.
Olsen K B, Archuleta R J and Matarese J R. Three-dimensional simulation of a magnitude 7.75 earthquake on the San Andreas fault[J]. Science, 1995, 270:1 628-1 632.
Patera A T. A spectral element method for fluid dynamics:laminar flow in a channel expansion[J]. J Comp Phys, 1984, 54:468-488.
Tarrass I, Giraud L and Thore P. New curvilinear scheme for elastic wave propagation in presence of curved topography[J]. Geophys Prospect, 2011, 59:889-906.
Wald D J and Graves R W. The seismic response of the Los Angeles basin, California[J]. Bull Seismol Soc Am, 1998, 88:337-356.