考虑区域地质构造差异、主要活动断裂分布特征和地表附加重力影响,建立反映龙门山地区地表起伏和岩石圈分层的三维粘弹性有限元模型。以GPS为约束重建研究区现今构造应力场,依次模拟龙门山地区1900年以来发生的5次MS 7.0以上地震,从库仑应力和等效应力角度,分析应力场演化对强震的影响以及强震间的相互作用关系。研究结果表明:从库仑应力角度,有3次地震对后续地震有促进作用,其中汶川地震对芦山地震有触发作用;从等效应力角度,有4次地震对后续地震的发生具有加速作用。
Considering the difference of regional geological structure, the main active fault zone, additional surface gravity, the 3-D viscoelastic finite element model of Longmenshan area with irregular topography and the layered lithosphere structure is constructed. Using the observed values of GPS as constraint condition, the present tectonic background stress field in the research area is reconstructed. Based on it, the 5 strong earthquakes (MS≥7.0) in Longmenshan region since 1900 is simulated, respectively. From the viewpoint of coseismic Coulomb failure stress and equivalent stress, the relationship between strong earthquakes in the models of different scales is investigated. The research results indicate that: From the viewpoint of coseismic Coulomb failure stress in Longmenshan area, it has 3 earthquakes that accelerate the following earthquakes, in which the Wenchuan earthquake triggers the Lushan earthquake. From the viewpoint of coseismic equivalent stress in Longmenshan area, there are 4 earthquakes that advance the following earthquakes.
2017,38(6): 1-9 收稿日期:2016-12-08
DOI:10.3969/j.issn.1003-3246.2017.06.001
基金项目:地震科技星火计划青年项目(项目编号:XH17035YSX);陕西省地震局启航与创新基金课题(项目编号:201501)
作者简介:刘盼(1987—),男,硕士,工程师,主要从事地震监测、地球动力学数值模拟研究工作.E-mail:liupan_0214@163.com
参考文献:
曹建玲,石耀霖,张怀,等. 青藏高原GPS位移绕喜马拉雅东构造结顺时针旋转成因的数值模拟[J]. 科学通报,2009,54(2):224-234.
陈连旺,张培震,陆远忠,等. 川滇地区强震序列库仑破裂应力加卸载效应的数值模拟[J]. 地球物理学报,2008,51(5):1 411-1 421.
邓起东,陈社发,赵小麟. 龙门山及其邻区的构造和地震活动及动力学[J]. 地震地质,1994,16(4):389-403.
邓起东,高翔,陈桂华,等. 青藏高原昆仑—汶川地震系列与巴颜喀喇断块的最新活动[J]. 地学前缘,2010,17(5):163-178.
邓起东,陈桂华,朱艾斓. 关于2008年汶川MS 8.0地震震源断裂破裂机制几个问题的讨论[J]. 中国科学:地球科学,2011,41(11):1 559-1 576.
董培育,程惠红,曾祥方,等. 四川芦山MS 7.0级地震导致周边断层的应力变化[J]. 科技导报,2013,31(12):19-22.
高翔,邓起东. 巴颜喀喇断块边界断裂强震活动分析[J]. 地质学报,2013,87(1):9-19.
胡幸平,崔效锋,宁杰远,等. 基于汶川地震序列震源机制解对龙门山地区构造变形模式的初步探讨[J]. 地球物理学报,2012,55(8):2 561-2 574.
阚荣举,张四昌,晏凤桐,等. 我国西南地区现代构造应力场与现代构造活动特征的探讨[J]. 地球物理学报,1977,20(2):96-109.
李玉江,陈连旺,陆远忠,等. 汶川地震的发生对周围断层稳定性影响的数值模拟[J]. 中国地质大学学报(地球科学),2013,38(2):398-410.
单斌,熊熊,郑勇,等. 2008年5月12日MW 7.9汶川地震导致的周边断层应力变化[J]. 中国科学:地球科学,2009,39(5):537-545.
单斌,熊熊,郑勇,等. 2013年芦山地震导致的周边断层应力变化及其与2008年汶川地震的关系[J]. 中国科学:地球科学,2013,43(6):1 002-1 009.
石耀霖,曹建玲. 中国大陆岩石圈等效粘滞系数的计算和讨论[J]. 地学前缘,2008,15(3):82-95.
孙玉军,董树文,范桃园,等. 中国大陆及邻区岩石圈三维流变结构[J]. 地球物理学报,2013,56(9):2 936-2 946.
万永革,吴忠良,周公威,等. 几次复杂地震中不同破裂事件之间的“应力触发”问题[J]. 地震学报,2000,22(6):568-576.
万永革,沈正康,曾跃华,等. 青藏高原东北部的库仑应力积累演化对大地震发生的影响[J]. 地震学报,2007,29(2):115-129.
万永革,沈正康,盛书中,等. 2008年汶川大地震对周围断层的影响[J]. 地震学报,2009,31(2):128-139.
王辉,张国民,石耀霖,等. 青藏活动地块区运动与变形特征的数值模拟[J]. 大地测量与地球动力学,2006,26(2):15-23.
王辉,刘杰,石耀霖,等. 鲜水河断裂带强震相互作用的动力学模拟研究[J]. 中国科学:地球科学,2008,38(7):808-818.
王敏中,王炜,武际可. 弹性力学教程[M]. 北京大学出版社,2011:80-84.
徐锡伟,闻学泽,叶建青,等. 汶川MS 8.0地震地表破裂带及其发震构造[J]. 地震地质,2008,30(3):597-629.
杨兴悦,陈连旺,杨立明,等. 巴颜喀拉块体强震动力学过程数值模拟[J]. 地震学报,2013,35(3):304-314.
岳汉,张竹琪,陈永顺. 相邻左旋走滑和逆冲断层之间的相互作用:1976年松潘震群[J]. 科学通报,2008,53(13):1 582-1 588.
曾祥方,韩立波,石耀霖. 四川芦山MS 7.0地震震源机制解初步研究[J]. 科技导报,2013,31(12):15-18.
张培震,徐锡伟,闻学泽,等. 2008年汶川8.0级地震发震断裂的滑动速率、复发周期和构造成因[J]. 地球物理学报,2008,51(4):1 066-1 073.
张培震,闻学泽,徐锡伟,等. 2008年汶川8.0级特大地震孕育和发生的多单元组合模式[J]. 科学通报,2009,54(7):944-953.
张培震,朱守彪,张竹琪,等. 汶川地震的发震构造与破裂机理[J]. 地震地质,2012,34(4):566-575.
张勇,许力生,陈运泰. 芦山4.20地震破裂过程及其致灾特征初步分析[J]. 地球物理学报,2013,56(4):1 408-1 411.
ADINA R&D. ADINA Theory and Modeling Guide Volume I. ADINA Solids & Structures[M]. Watertown: ADINAR&D, 2013.
Fang L H, Wu J P, Liu J, et al. Preliminary Report on the 22 November 2014 MW 6.1/MS 6.3 Kangding Earthquake, Western Sichuan, China[J]. Seismological Research Letters, 2015, 86(6): 1 603-1 613.
Freed A M. Earthquake triggering by static, dynamic, and postseismic stress transfer[J]. Annual Review of Earth and Planetary Sciences, 2006, 33: 335-367.
Gan W J, Zhang P Z, Shen Z K, et al. Present-day crustal motion within the Tibetan Plateau inferred from GPS measurements[J]. Journal of Geophysical Research, 2007, 112 (B8): B08416, doi: 10.1029/2005JB004120.
Harris R A. Introduction to special section: Stress triggers, stress shadows, and implications for seismic hazard[J]. Journal of Geophysical Research, 1998, 103(B10): 24 347-24 358.
Li Y H, Wu Q J, Pan J T, et al. An upper-mantle S-wave velocity model for East Asia from Rayleigh wave tomography[J]. Earth and Planetary Science Letters, 2013, 377/378: 367-377.
Li Y H, Gao M T, Wu Q J. Crustal thickness map of the Chinese mainland from teleseismic receiver functions [J]. Tectonophysics, 2014, 611: 51-60.
Molnar P, Deng Q D. Faulting associated with large earthquakes and the average rate of deformation in central and eastern Asia[J]. Journal of Geophysical Research, 1984, 89(B7): 6 203-6 227.
Parsons T, Ji C, Kirby E. Stress changes from the 2008 Wenchuan earthquake and increased hazard in the Sichuan basin[J]. Nature, 2008, 454(7 203): 509-510.
Toda S, Lin J, Meghraoui M, et al. 12 May 2008 M=7.9 Wenchuan, China, earthquake calculated to increase failure stress and seismicity rate on three major fault systems [J]. Geophysical Research Letters, 2008, 35(17): L17305.
Wang Y Z, Wang F, Wang M, et al. Coulomb stress change and evolution induced by the 2008 Wenchuan earthquake and its delayed triggering of the 2013 MW 6.6 Lushan earthquake[J]. Seismological Research Letters, 2014, 85(1): 52-59.
Wells D L, Coppersmith K J. New empirical relationships among magnitude, rupture length, rupture width, rupture area, and surface displacement[J]. Bulletin of the Seismological Society of America, 1994, 84(4): 974-1 002.
Zhu S B, Zhang P Z. Numeric modeling of the strain accumulation and release of the 2008 Wenchuan, Sichuan, China, Earthquake[J]. Bulletin of the Seismological Society of America, 2010, 100(5B): 2 825-2 839.
Zhu S B, Zhang P Z. FEM simulation of interseismic and coseismic deformation associated with the 2008 Wenchuan Earthquake[J]. Tectonophysics, 2013, 584: 64-80.