简要叙述地震震级概念的提出及其历史发展。文中指出,矩震级MW是目前量度地震大小最理想的物理量。与传统上使用的其他震级标度相比,矩震级不会饱和,对于所有地震,无论大小、深浅,无论使用远场、近场地震波资料,大地测量和地质资料中的何种资料,均可测量矩震级,并能与熟知的震级标度如面波震级MS相衔接。矩震级是一个均匀的震级标度,适于震级范围很宽的统计。矩震级是国际地震学界选定的首选震级,负责向公众发布地震信息的部门优先采用的发布的震级。文中介绍了计算矩震级所用的公式,详细解说了具体的计算步骤,分析了由于采用的计算矩震级公式的不同,采取的具体的数值计算步骤的不同引起的问题以及解决这些问题的相关的规定。
In this paper, we provide a brief introduction on the putting forward and development history of earthquake magnitude concept. Moment magnitude MW is the best physical quantity for measure earthquake. Comparing with other magnitude scales, it can be used to measure the magnitude of any earthquake and would never be saturation, no matter the earthquake is big or small, deep or shallow. It can also be used in processing far field or near field seismic wave data, geodesy data and geology data, and connected with known magnitude scales, such as surface wave magnitude. Moment magnitude is a uniform magnitude, available to broad magnitude statistics. It is the preferred magnitude for international seismology, and also the prior release magnitude for the responsible agency for providing information about earthquakes to the public. We introduced all formulas used in the calculation of moment magnitude, and calculation steps in detail. We also analyzed some of the problems, which relate with the usage of different formulas and numerical value calculation steps, and the rules for solving these problems.
2018,39(2): 1-9 收稿日期:2018-03-28
DOI:10.3969/j.issn.1003-3246.2018.02.001
基金项目:中国地震局监测预报司监测业务(2018):新的震级国家标准实施技术支持与效果分析
作者简介:陈运泰(1940-),男,地球物理学家,中国科学院院士,第三世界科学院院士,主要从事地震学和地球物理学研究
参考文献:
陈运泰, 刘瑞丰. 地震的震级[J]. 地震地磁观测与研究, 2004, 25(6):1-12.
傅承义, 陈运泰, 祁贵仲. 地球物理学基础[M]. 北京:科学出版社, 1985:1-447.
刘瑞丰, 陈运泰, 任枭, 徐志国, 王晓欣, 邹立晔, 张立文. 震级的测定[M]. 北京:地震出版社, 2015:1-154.
Aki K and Richards P G. Quantitative Seismology:Theory and Methods. 1 & 2[M]. San Francisco:W H Freeman, 1980:1-932.
Aki K. Generation and propagation of G waves from Niigata earthquake of June 16, 1964. Estimation of earthquake movement, released energy and stress-strain drop from G wave spectrum[J]. Bull Earthq Res Inst, Tokyo Univ, 1966, 44:73-88.
Abe K. Magnitudes and moments of earthquakes. In:Ahrens T J (ed)[M]. Global Earth Physics:A Handbook of Physical Constants.Washington, DC:AGU, 1975:206-213.
Bormann P. Are new data suggesting a revision of the current MW and Me scaling formulas?[J]. Journal of Seismol, 2015, 19:989-1 002.
Hanks T C and Kanamori H. A moment magnitude scale[J]. J Geophys Res, 1979, 84(B5):2 348-2 350.
IASPEI. Summary of Magnitude Working Group Recommendations on Standard Procedures for Determining Earthquake Magnitudes from Digital Data, Preliminary Version October 2005[EB].[2018-03-09]. http://iaspei.org/commissions/commission-on-seismological-observation-and-interpretation#04,2005.
IASPEI. Summary of Magnitude Working Group Recommendations on Standard Procedures for Determining Earthquake magnitudes from Digital Data, Updated Version 27 March 2013[EB].[2018-03-09]. http://iaspei.org/commissions/commission-on-seismological-observation-and-interpretation#04,2013.
Kanamori H and Anderson D L. Theoretical basis of some empirical relations in seismology[J]. Bull Seismol Soc Am, 1975, 65:1 073-1 095.
Kanamori H and Heaton T H. Microscopic and macroscopic physics of earthquakes. In:Rundle J B,Turcotte D L and Klein W (eds.)[M]. GeoComplexity and the Physics of Earthquakes, AGU Monograph 120, Washington, DC:AGU, 2000:147-163.
Kanamori H and Rivera L. Energy partitioning during an earthquake. In:Abercrombie R, McGarr A, Toro G D and Kanamori H (eds.), Earthquakes:Radiated Energy and the Physics of Faulting[M]. AGU Geophysical Monograph 170, Washington, DC:AGU, 2006:3-13.
Kanamori H. The energy release in great earthquakes[J]. J Geophys Res, 1977, 82(20):2 981-2 987.
Kanamori H. Mechanics of earthquakes[J]. Ann Rev Earth Planet Sci, 1994, 22:207-237.
Kwiatek G, Plenkers K, Naketani M, Yabe Y, Dresen G and JAGUARS-group. Frequency-magnitude characteristics down to magnitude 4.4 for included seismicity recorded at Mponeng gold mine South Africa[J]. Bull Seismol Soc Am, 2010, 100(3):1 165-1 172.
Purcaru G and Berckhemer H. A magnitude scale for very large earthquakes[J]. Tectonophysics, 1978, 49:189-198.
Purcaru G and Berckhemer H. Quantitative relations of seismic source parameters and a classification of earthquakes. In:Duda, S J and Aki K eds[M]. Quantification of Earthquakes, Tectonophysics, 1982, 84(1):57-128.
Richter C F. An instrumental earthquake magnitude scale[J]. Bull Seismol Soc Am, 1935, 25:1-32.
Richter C F. Elementary Seismology[M]. San Francisco:W H Freeman, 1958:1-768.
Stein S and Wysession M. An Introduction to Seismology, Earthquakes and Earth Structure[M]. Malden:Blackwell Publishing, 2003:1-498.
Udias A. Principles of Seismology[M]. Cambridge:Cambridge University Press, 1999:1-475.
Wadati K. Shallow and deep earthquakes[M]. Tokyo:Geophysical Magazine, 1928, 1:162-202.
Wadati K. Shallow and deep earthquakes (3rd paper)[M]. Tokyo:Geophysical Magazine, 1931, 4:231-283.
Wyss M and Brune J N. Seismic moment, stress and source dimensions for earthquakes in the California-Nevada region[J]. J Geophys Res, 1968, 73:4 681-4 694.
Wyss M and Brune J N. Regional vaiations of source properties in Southern Ealiforni estimated from the ratio of short-to longperiod ampltitudes[J]. Bull Seismol Soc Am, 1971, 61:1 153-1 167.