震害资料显示,场地条件对地震动特性以及工程结构破坏程度影响显著。为减少因场地效应而造成的经济损失和社会影响,在进行场地地震反应分析时,需最大限度地减小因场地土层模型参数的不确定性引起的地震动评估偏差,为工程结构地震反应分析选取并生成适当的地震动输入。随着强震动观测技术的逐渐发展,大量可靠的钻井台阵记录为地震过程中场地观测点的动力反应提供了直接数据。以美国加州地区La Cienega钻井台阵强震动观测数据为基础,利用互相关函数,对不同强度地震作用下场地土层的平均剪切波速进行分析,并在此基础上,以Cyclic 1D为模拟平台,建立一维自由场地地震反应有限元分析模型。分析结果表明:通过钻井台阵地震动观测数据识别,得到场地平均剪切波速,能够反映该场地的动力特性,数值模拟计算结果和台阵地震动记录基本吻合,可为数值模型参数选取提供依据。
Seismic downhole-array monitoring in-situ earthquake motions at the ground surface and in soil profile provides valuable information on local soil dynamic characteristics under seismic motions. In particular, with the help of system identification techniques insights are obtained for relationships between local geologic conditions and real time ground motions. In this paper, La Cienega geotechnical array installed by California Strong Motion Instrumentation Program (CSMIP) was employed to evaluate shear wave velocity, examine the nonlinear soil response during earthquake shaking and investigate the site seismic response. Thirteen earthquakes recorded by La Cienega geotechnical array, where the strongest shaking event of West Hollywood earthquake on Sep.9, 2001 was recorded with the peak ground acceleration of 0.49 g, were employed to perform cross-correlation analyses. A 1-D numerical analysis model is developed with the identified shear wave velocity. Comparisons between the computed response and the downhole array records show good agreements. This validated model can be used to predict the site response during future shaking events.
2018,39(4): 141-148 收稿日期:2018-06-20
DOI:10.3969/j.issn.1003-3246.2018.04.018
基金项目:国家自然科学基金(项目编号:51708518);国家重点研发计划(项目编号:2017YFC1500400);中国地震局地球物理研究所中央级公益性科研院所基本科研业务专项(项目编号:DQJB17B09)
作者简介:王宁(1977-),女,博士,助理研究员,主要从事岩土地震工程研究工作。E-mail:ningwang_cea@163.com
参考文献:
陈学良,金星,陶夏新,等. 响嘡钻井台阵场地土体动力特性反演分析[J]. 地震学报,2007,29(4):400-408.
杜修力,路德春. 土动力学与岩土地震工程研究进展[J]. 岩土力学,2011,32(Z2):10-20.
胡聿贤,孙平善,章在墉,等. 场地条件对震害和地震动的影响[J]. 地震工程与工程振动,1980,(1):34-41.
李小军. 非线性土层地震反应分析的一种方法[J]. 华南地震,1992,12(4):1-8.
李小军. 土的动力本构关系的一种简单函数表达式[J]. 岩土工程学报,1992,14(5):90-94.
刘汉龙. 土动力学与土工抗震研究进展综述[J]. 土木工程学报,2012,45(4):148-164.
卢滔. 响嘡台阵场地特征及其反应的分析[D]. 哈尔滨:中国地震局工程力学研究所,2003.
卢滔,周正华,霍敬妍. 土层非线性地震反应一维时域分析[J]. 岩土力学,2008,29(8):2 170-2 176.
栾茂田,林皋. 场地地震反应一维非线性计算模型[J]. 工程力学,1992,9(1):94-103.
潘龙. 基于推倒分析方法的桥梁结构地震损伤分析与性能设计[D]. 上海:同济大学,2001.
齐文浩. 土层非线性地震反应分析方法研究[D]. 哈尔滨:中国地震局工程力学研究所,2008.
王海云. 土层场地的放大作用随深度的变化规律研究——以金银岛岩土台阵为例[J]. 地球物理学报,2014,57(5):1 498-1 509.
温瑞智,冀昆,任叶飞,等. 基于谱比法的我国强震台站场地分类[J]. 岩石力学与工程学报,2015,34(6):1 236-1 241.
谢礼立,李沙白,章文波. 唐山响堂三维场地影响观测台阵[J]. 地震工程与工程振动,1999,19(2):1-8.
赵成刚. 土力学的现状及其数值分析方法中某些问题的讨论[J]. 岩土力学,2006,27(8):1 361-1 364.
Beresnev I A, Wen K L. Nonlinear soil response-A reality?[J]. Bull Seismol Soc Am, 1996, 86(6):1 964-1 978.
Borja R I, Duvernay B G, Lin C H. Ground Response in Lotung:Total Stress Analyses and Parametric Studies[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2002,128(1):54-63.
Chang C Y, Mok C M, Tang H T. Inference of Dynamic Shear Modulus from Lotung Downhole Data[J]. Journal of Geotechnical Engineering, 1996,122(8):657-665.
Elgamal A, Zeghal M, Tang H, et al. Lotung Downhole Array. I:Evaluation of Site Dynamic Properties[J]. Journal of Geotechnical Engineering, 1995,121(4):350-362.
Finn W D L, Ventura C E, Wu G. Analysis of ground motions at Treasure Island site during the 1989 Loma Prieta earthquake[J]. Soil Dynamics and Earthquake Engineering, 1993, 12(7):383-390.
Glaser S D, Baise L G. System identification estimation of soil properties at the Lotung site[J]. Soil Dynamics and Earthquake Engineering, 2000, 19(7):521-531.
Gunturi V R, Elgamal A W M, Tang H T. Hualien seismic downhole data analysis[J]. Engineering Geology, 1998, 50(1):9-29.
Harichane Z, Afra H, Elachachi S M. An identification procedure of soil profile characteristics from two free field acclerometer records[J]. Soil Dynamics and Earthquake Engineering, 2005, 25(6):431-438.
Holzer T L, Youd T L. Liquefaction, ground oscillation, and soil deformation at the Wildlife Array, California[J]. Bull Seismol Soc Am, 2007, 97(3):961-976.
Katayama T, Yamazaki F, Nagata S, Lu L, Turker T. A strong motion database for the chiba seismometer array and its engineering analysis[J]. Earthquake Engineering and Structural Dynamics, 1990, 19(8):1 089-1 106.
Seed H B, Idriss I M. Influence of soil conditions on ground motions during earthquakes[J]. Journal of the Soil Mechanics and Foundations Division, 1969, 95(1):99-138.
Wen K, Chang T, Lin C, Chiang H. Identification of nonlinear site response using the H/V spectral ratio method[J]. Terrestrial Atmospheric and Oceanic Sciences, 2006, 17(3):533-546.
Wen K L, Beresnev I A, Yeh Y T. Nonlinear soil amplification inferred from downhole strong seismic motion data[J]. Geophysical Research Letters, 1994, 21(24):2 625-2 628.
Yang J, Sato T, Li X S. Nonlinear site effects on strong ground motion at a reclaimed island[J]. Canadian Geotechnical Journal, 2000, 37(1):26-39.
Yang Z. Numerical Modeling of Earthquake Site Response Including Dilation and Liquefaction[D]. Ph D Dissertation Columbia University, New York, 2000.
Yang Z, Elgamal A, Parra E. Computational Model for Cyclic Mobility and Associated Shear Deformation[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2003, 129(12):1 119-1 127.
Zeghal M, Elgamal A, Tang H T, Stepp J C. Lotung Downhole Array. Ⅱ:Evaluation of Soil Nonlinear Properties[J]. Journal of Geotechnical Engineering, 1995, 121(4):363-377.