依据FFT计算方法,选取中国地磁、地电台网各10个台站记录,对NS、EW分量进行10日频谱分析,结果发现,磁静日和磁扰日电、磁场数据具有不同特征。
(1)磁静日数据:①电、磁场周期成分以12 h为主,其次为24 h、8 h。在X分量(NS向)中,非显著周期成分,如4 h、48 h、6 h,所占频次较大,Y分量只存在12 h、24 h、8 h成分;②EW测向(或Y分量)电、磁场最大频谱值大于NS测向(X分量);③ X分量最大谱值多在12 h,Y分量在24 h;④台网位置由北向南,Y分量最大谱值逐渐减小,X分量则两头略高,在35.0°—40.0°N范围内变化平稳。
(2)地电暴日数据:①沿海地区NS测向主要周期成分比内陆地区复杂且偏大,大于18 h的成分相对活跃,最大以20 h、24 h、36 h成分出现,内陆地区最大周期成分为18 h,其次为12 h。EW测向谱值在各台变化较一致,均体现了以12 h、8 h为主的变化特征;②各台NS测向最高谱值均大于EW测向。
According to the FFT calculation method, 10 stations record of China geomagnetic and 10 geoelectric networks are selected to perform 10-day spectrum analysis on NS and EW components. It was found that there are different characteristics with the magnetic static day, magnetic disturbance solar energy and magnetic field data.
(1)Magnetic static day data:①The electrical and magnetic field periodic components are mainly 12 h, secondarily followed by 24 h and 8 h. In the X component (NS direction), non-significant periodic components occupy a larger frequency, such as 4 h, 48 h and 6 h and the Y component only has 12 h, 24 h and 8 h components; ②The maximum spectral value of electricity and magnetic fields of EW direction finding (or Y component) is larger than NS direction finding (X component); ③The maximum spectral value of the X component is mostly at 12 h, and the Y component is at 24 h;④The position of the four networks is from north to south, and the maximum spectral value of the Y component is gradually reduced. The X component is slightly higher at both ends, and the variation is stable within the range of 35.0°-40.0°N.
(2)Magnetic storm day data:①The main periodic components of the X component in the coastal area are more complex and larger than those in the inland area. The components above 18 h are relatively active, with the largest components appearing at 20 h, 24 h and 36 h. The maximum period component of the inland region is 18 h, next followed by 12 h. The Y component spectral values are more consistent in each station, and both reflect the variation characteristics of 12 h and 8 h;②The highest spectral values of each X component in every station are larger than the Y component.
2019,40(2): 52-61 收稿日期:2018-08-24
DOI:10.3969/j.issn.1003-3246.2019.02.007
基金项目:中国地震局“三结合”课题(项目编号:3JH-160309,3JH-201901023)
作者简介:周剑青(1977-),男,工程师,主要从事地震电磁监测工作
*通讯作者:郭建芳(1977-),女,高级工程师,从事地震分析预报工作
参考文献:
程佩青. 数字信号处理教程[M]. 北京:清华大学出版社,2010:45-90.
杜学彬,叶青,赵杰,等.地电场日变化研究[J].地震,2007,27(Z1):121-130.
何康,洪德全,李军辉,等.安徽省数字化地电场FFT频谱分析研究[J].防灾科技学院学报,2014,16(2):63-67.
李琪.国内外地磁台网观测能力评估[J].国际地震动态,2007,(9):20-28.
马钦忠,李伟,张继红,等.与大电流信号有关的华北东部地区地电场空间变化特征的研究[J].地球物理学报,2014,57(2):518-530.
莫承彬,陈忠献,陆怀成.自然电场法剧变场的起因初探及其应用[J].物探与化探,1995,19(4):315-318.
祁贵仲.局部地区地磁日变分析方法及中国地区Sq场的经度效应[J].地球物理学报,1975,18(2):104-117.
钱家栋.地震电磁学理论基础与观测技术[M].北京:地震出版社,2010:25-95.
徐文耀.用中低纬度地磁资料确定Seq电流体系的焦点[J].空间科学学报,1987,7(2):117-127.
徐文耀,李卫东. Sq外源和内源电流体系的经度效应和UT变化[J].地球物理学报,1994,37(4):440-447.
徐文耀.地球电磁现象物理学[M].合肥:中国科学技术大学出版社,2009:260-310.
叶青,杜学彬,周克昌,等.大地电场变化的频谱特征[J].地震学报,2007,29(4):382-390.
张建国,姚丽,刘晓灿,等.地震电离层VLF电磁场频谱特征研究[J].大地测量与地球动力学,2012,32(3):110-115.
张建国,焦立果,刘晓灿,等.汶川MS 8.0级地震前后ULF电磁辐射频谱特征研究[J].地球物理学报,2013,56(4):1 253-1 261.
赵旭东,杜爱民,徐文耀,等. Sq电流系午前午后不对称性现象的来源[J].地球物理学报,2008,51(3):643-649.
Cooley J W, Tukey J W. An algorithm for the machine calculation of complex Fourier series[J]. Math Comput, 1965, 19(90):297-301.
Bleszynski E, Bleszynski M, Jaroszewicz T. AIM:Adaptive integral method for solving large-scale electromagnetic scattering and radiation problems[J]. Radio Science, 1996, 31(5):1 225-1 251.
Gedney S, Zhu A M, Tang W H, et al. A fast, high-order quadrature sampled pre-corrected fast-Fourier transform for electromagnetic scattering[J]. Microw Opt Technol Lett, 2003, 36(5):343-349.
Liu Q H. The PSTD algorithm:A time-domain method requiring only two cells per wavelength[J]. Microw Opt Technol Lett, 1997, 15(3):158-165.
Nie X C, Li L W, Yuan N, et al. Precorrected-FFT solution of the volume integral equation for 3-D inhomogeneous dielectric objects[J]. IEEE Trans Antennas Propag, 2005, 53(1):313-320.
Sarkar T, Arvas E, Rao S. Application of FFT and the conjugate gradient method for the solution of electromagnetic radiation from electrically large and small conducting bodies[J]. IEEE Trans Antennas Propag, 1986, 34(5):635-640.