2018年5月28日吉林松原发生MS 5.7地震。为了分析松原地震前可能与地震有关的热红外亮温异常,收集了以震中为中心的38°-50°N、116°-134°E范围内,2013年1月1日-2018年6月18日静止气象卫星FY-2G观测的地表亮温资料,应用连续小波变换方法计算了每一个像元的小波相对能谱,得到了分析区域内相对能谱的时、空演化规律。结果显示,地震前1周吉林-丰满断裂周围出现相对能谱值超出背景值的异常现象;且随着地震的临近,异常区域沿着松花江第二断裂带向NW方向扩展,异常幅度随之增大。地震发生后异常幅度及面积继续增大,直至震后1个月异常逐渐消失。含油气盆地地下大量天然气对震前应力的变化较敏感,当应力积蓄到一定程度,盆地周缘的活动构造带及一些微裂隙都是天然气上涌的通道,而溢出地表的甲烷、二氧化碳等温室气体辐射增温效果明显。在震前,盆地出现大片区域的辐射增温异常可能与天然气外泄有关,或许可以解释松原MS 5.7地震震中位于异常区外边缘的现象。
Songyuan MS 5.7 earthquake occurred in Jilin on May 28, 2018. In order to analyze the thermal infrared brightness anomalies, which may be associated with the earthquake before the Songyuan earthquake, the daily brightness temperature data from the Chinese geostationary meteorological satellite FY-2G were used for the period from January 2013 to July 2018 with the spatial region 116°-134°E longitude by 38°-50°N latitude. The wavelet relative power spectrum of each pixel is calculated by the continuous wavelet transform method and obtained the time-space evolution process of the relative power spectrum in the region. The results show that in the week before the earthquake, the relative wavelet power spectrum of Jilin-Fengman fault exceeds the background value. With the earthquake approaching the anomalous areas extend along the Songhua river second fault along the NW direction, and the anomaly amplitude increases. After the earthquake, the anomaly amplitude and areas continue to increase until the anomaly gradually disappears one month after the earthquake. A large amount of natural gas underground in petroliferous basins is sensitive to the change of pre-earthquake stress. When the seismic stress accumulates to a certain extent, the active structural belts and some micro-fractures around the basin are the channels for natural gas upwelling and the methane and carbon dioxide emissions from the earth's surface can increase the temperature obviously. Before the earthquake, the radiation anomaly in a large area of the basin may be related to natural gas leakage, which may explain why the epicenter of the Songyuan MS 5.7 earthquake is at the edge of the anomalous area.
2019,40(5): 85-92 收稿日期:2019-05-23
DOI:10.3969/j.issn.1003-3246.2019.05.012
基金项目:辽宁省科学技术计划(项目编号:2019JH8/10300108)
作者简介:李梦莹(1990-),女,助理工程师,主要从事地震地磁及热红外研究工作。E-mail:1593919580@qq.com
*通讯作者:张志宏(1986-),男,工程师,主要从事地震地磁研究工作。E-mail:568950612@qq.com
参考文献:
陈梅花,邓志辉,马晓静,等.强地震前水汽中长期异常变化特征研究[J].地震地质,2011,33(3):549-559.
马瑾,陈顺云,扈小燕,等.大陆地表温度场的时空变化与现今构造活动[J].地学前缘,2010,17(4):1-14.
屈春燕,马瑾,单新建.一次卫星热红外地震前兆现象的证伪[J].地球物理学报,2006(2):490-495.
邵博,沈军,于晓辉,等.松原市扶余北隐伏活动断裂地震潜势研究[J].地震工程学报,2016,38(4):616-623.
万永魁,沈军,刘峡,等.松原市扶余北断裂的发现及活动性鉴定[J].中国地震,2016,32(3):477-484.
魏乐军,郭坚峰,蔡慧,等.卫星热红外异常——四川汶川MS 8.0级大地震的短临震兆[J].地球学报,2008,(5):583-591.
温少妍. 地震构造区红外亮温背景场建立及异常提取方法研究[D].青岛:中国石油大学(华东),2011.
吴立新,李国华,吴焕萍.热红外成像用于固体撞击瞬态过程监测的实验探索[J].科学通报,2001(2):172-176.
解滔,郑晓东,康春丽,等. 2014年2月12日新疆于田MS 7.3地震热红外亮温异常分析[J].中国地震,2015,31(1):101-109.
徐锡伟,陈桂华,于贵华,等.芦山地震发震构造及其与汶川地震关系讨论[J].地学前缘,2013,20(3):11-20.
张丽峰,郭晓,张璇,等.强震中波红外异常特征研究[J].地震工程学报,2016,38(6):977-984.
张璇,张元生,魏从信,等.四川芦山7.0级地震卫星热红外异常解析[J].地震工程学报,2013,35(2):272-277.
张元生,郭晓,魏从信,等.日本9级和缅甸7.2级地震热辐射表现特征[J].地球物理学报,2011,54(10):2 575-2 580.
张元生,郭晓,钟美娇,等.汶川地震卫星热红外亮温变化[J].科学通报,2010,55(10):900-906.
Choudhury S, Dasgupta S, Saraf A K. Remote sensing observation of pre-earthquake thermal anomalies in Iran[J]. Int J Remote Sens, 2006, 27(20):4 381-4 396.
Gorny V I, Salman A G, Tronin A A, et al. The earth's outgoing IR radiation as an indicator of seismic activity[J]. Proc Acad Sci USSR, 1988, 301(1):67-69.
Kumar P, Foufoula-Georgiou E. Wavelet analysis for geophysical applications[J]. Rev Geophys, 1997, 35:385-412.
Ouzounov D, Freund F. Mid-infrared emission prior to strong earthquakes analyzed by remote sensing data[J]. Adv Space Res, 2003, 33:268-273.
Saraf A K, Choudhury S. Earthquakes and thermal anomalies[J]. Geospatial Today, 2003, 2:18-20.
Saraf A K, Rawat V, Das J. Satellite detection of thermal precursors of Yamnotri, Ravar and Dalbandin earthquakes[J]. Nat Hazard, 2012, 61:861-872.
Torrence C, Compo G P. A practical guide to wavelet analysis[J]. Bull Am Meteorol Soc, 1998:61-78.
Tramutoli V, Bello G D, Pergola N, et al. Robust satellite techniques for remote sensing of seismically active areas[J]. Ann Geofis, 2001, 44:295-312.
Tronin A A, Biagi P F, Molchanov O A, et al. Temperature variations related to earthquakes from simultaneous observation at the ground station and by satellite in Kamchatka area[J]. Phys Chem Earth, 2004, 29:501-506.
Tronin A A. Satellite thermal survey-a new tool for the studies of seismoactive regions[J]. Int J Remote Sens, 1996, 17:1 439-1 455.