2014年在山西地震带北段和张家口-渤海地震带布设35个测量剖面,测量土壤气CO2、Rn浓度及深度20 cm、1 m的CO2和Rn通量。测量结果表明:①CO2、Rn浓度与深度20 cm、1 m的CO2、Rn通量的平均值和最大值变化趋势大致相同,均呈自西向东的增大趋势;②深度20 cm、1 m的CO2和Rn通量相关性均不明显,但1 m深的CO2、Rn通量明显较高;③CO2和Rn浓度、通量变化主要与区域复杂的地震活动性和断层活动性有关,主要受到地表化学成分和区域岩石地球化学影响。
Using observations at 35 measurement profiles arranged in the northern Shanxi seismic zone and Zhang Jiakou-Bohai seismic zone in 2014, we investigated CO2 and Rn concentrations, and the gas fluxes of the CO2 and Rn at the depths of 20 cm and 1 m. The results showed that:①The variation trends of the average and maximum values of CO2 and Rn soil gas concentrations, 20 cm deep and 1m deep CO2 and Rn fluxes were basically the same, which both showed an increasing trend from west to east; ②The correlation coefficient of CO2 and Rn fluxes at the depths of 20 cm and 1 m were both low, but the CO2, Rn fluxes at the depth of 1 m were significantly higher than that of 20 cm; ③The concentrations and fluxes of CO2 and Rn are mainly related to regional complex seismicity and fault activity and affected by surface chemical composition and regional rock geochemistry.
2020,41(2): 113-122 收稿日期:2019-10-11
DOI:10.3969/j.issn.1003-3246.2020.02.013
基金项目:中国地震局地震预测研究所基本科研业务费(项目编号:2016IES010304,2017IES010205,2018IES010104);国家重点研发计划(项目编号:2017YFC1500501);国家自然科学基金面上项目(项目编号:41673106)
作者简介:赵红坤(1993-),女,硕士研究生在读,研究方向:应用地球化学。E-mail:878063323@qq.com
*通讯作者:周晓成(1978-),男,研究员,主要研究方向:构造地球化学,流体地球化学。E-mail:zhouxiaocheng188@163.com
参考文献:
陈佳维,崔效锋,胡幸平. 唐山及周边地区中小地震重定位及其构造特征[J]. 华北地震科学,2017,35(1):1-9.
韩晓昆,李营,杜建国,等. 夏垫断裂中南段土壤气体地球化学特征[J]. 物探与化探,2013,37(6):976-982.
纪静,郭良迁,陈聚忠. 基于GPS观测的张渤带形变[J]. 华北地震科学,2016,34(3):37-41.
李营,杜建国,王富宽,等. 延怀盆地土壤气体地球化学特征[J]. 地震学报,2009,31(1):82-91.
李西双,刘保华,华清峰,等. 张家口-蓬莱断裂带渤海段晚第四纪活动特征[J]. 海洋科学进展,2009,27(3):332-341.
刘耀炜,任宏微. 汶川8.0级地震氡观测值震后效应特征初步分析[J]. 地震,2009,29(1):121-131.
马文涛,徐锡伟,于贵华,等. 首都圈地区的地震活动性与断裂的关系[J]. 地震地质,2004,26(2):293-304.
孟令刚. 首都圈水资源对地区经济发展的影响[D]. 北京:北京工业大学,2005.
盛艳蕊,张子广,周晓成,等. 新保安-沙城断裂带土壤气地球化学特征分析[J]. 地震,2015,35(4):90-98.
史杨,官致君,杨耀. 断层土壤气氡的应用综述[J]. 四川地震,2017,(2):38-44.
谢卓娟,吕悦军,方怡,等. 京津冀地区地震重新定位及其与活动断裂的关系[J]. 地震,2017,37(3):72-83.
徐海,朴河春. 喀斯特地区土壤表层CO2释放通量的影响因素Ⅱ机制[J]. 生态学杂志,2004,23(2):73-75.
姚慧敏,王志刚. 蓟县山前土壤氡浓度与断裂和地热关系研究[J]. 地质调查与研究,2009,32(3):221-227.
张广伟,雷建设,谢富仁,等. 华北地区小震精定位及构造意义[J]. 地震学报,2011,33(6):699-714.
张红艳,谢富仁,荆振杰. 京西北盆岭构造区现代构造应力场的非均匀特征[J]. 地球物理学报,2009,52(12):3061-3071.
张炜斌,杜建国,周晓成,等. 首都圈西部盆岭构造区地热水水文地球化学研究[J]. 矿物岩石地球化学通报,2013,32(4):489-496.
郑海刚,方震,周晓成,等. 郯庐断裂带安徽段土壤气体的地球化学特征[J]. 中国地震,2016,32(4):642-652.
张冠亚,周晓成,李营,等. 怀安盆地北缘断裂东段土壤气体地球化学特征[J]. 地震,2015,35(3):113-122.
周晓成,陈超,吕超甲,等. 首都圈西北部主要活动断裂土壤气中氢气(H2)地球化学特征[J]. 环境化学,2017a,36(5):977-983.
周晓成,孙凤霞,陈志,等. 汶川MS 8.0地震破裂带CO2、CH4、Rn和Hg脱气强度[J]. 岩石学报,2017b,33(1):291-303.
周晓成,王传远,柴炽章,等. 海原断裂带东南段土壤气体地球化学特征[J]. 地震地质,2011,33(1):123-132.
周志华,赵烽帆,李营,等. 首都圈土壤气中氡环境地球化学特征[J]. 生态学杂志,2014,33(7):1729-1733.
Abumurad K M, Al-Tamimi M. Emanation power of radon and its concentration in soil and rocks[J]. Radiation Measurements, 2001, 34(1):423-426.
Abumurad K M, Atallah M, Kullab M K, et al. Determination of radon soil concentration levels in the governorate of Irbid, Jordan[J]. Radiation Measurements, 1997, 28(1/6):585-588.
Baubron J C, Allard P, Sabroux J C, et al. Soil gas emanations as precursory indicators of volcanic eruptions[J]. Journal of the Geological Society, 1991, 148(3):571-576.
Camarda M, Gurrieri S, Valenza M. Effects of soil gas permeability and recirculation flux on soil CO2, flux measurements performed using a closed dynamic accumulation chamber[J]. Chemical Geology, 2009, 265(3/4):387-393.
Chiodini G, Caliro S, Cardellini C, et al. Carbon isotopic composition of soil CO2 efflux, a powerful method to discriminate different sources feeding soil CO2, degassing in volcanic-hydrothermal areas[J]. Earth and Planetary Science Letters, 2008, 274(3/4):372-379.
Choubey V M, Bist K S, Saini N K, et al. Relation between soil-gas radon variation and different lithotectonic units, Garhwal Himalaya, India[J]. Applied Radiation and Isotopes, 1999, 51(5):587-592.
Ciotoli G, Bigi S, Tartarello C, et al. Soil gas distribution in the main coseismic surface rupture zone of the 1980, MS=6.9, Irpinia earthquake (southern Italy)[J]. Journal of Geophysical Research:Solid Earth, 2014, 119(3):2440-2461.
Ciotoli G, Guerra M, Lombardi S, et al. Soil gas survey for tracing seismogenic faults:A case study in the Fucino Basin, central Italy[J]. Journal of Geophysical Research:Solid Earth, 1998, 103(B10):23781-23794.
Elío J, Ortega M F, Nisi B, et al. CO2 and Rn degassing from the natural analog of Campo de Calatrava (Spain):Implications for monitoring of CO2, storage sites[J]. International Journal of Greenhouse Gas Control, 2015, 32:1-14.
Erees F S, Yener G, Salk M, et al. Measurements of radon content in soil gas and in the thermal waters in Western Turkey[J]. Radiation Measurements, 2006, 41(3):354-361.
Gasparini P, Mantovani M S M. Radon anomalies and volcanic eruptions[J]. Journal of Volcanology and Geothermal Research, 1978, 3(3/4):325-341.
Girault F, Perrier F, Crockett R, et al. The Syabru-Bensi hydrothermal system in central Nepal:1. Characterization of carbon dioxide and radon fluxes[J]. Journal of Geophysical Research:Solid Earth, 2014a, 119(5):4017-4055.
Girault F, Perrier F. The Syabru-Bensi hydrothermal system in central Nepal:2. Modeling and significance of the radon signature[J]. Journal of Geophysical Research:Solid Earth, 2014b, 119(5):4056-4089.
Hubbard L M, Hagberg N. Time-variation of the soil gas radon concentration under and near a Swedish house[J]. Environment International, 1996, 22(Z1):477-482.
Kang D W, Kim H G. Measurement of Radon Concentration in the near-surface Soil Gas by CR-39 Detectors[J]. Journal of Radiation Protection and Research, 1988, 13(2):57-66.
Koike K, Yoshinaga T, Asaue H. Characterizing long-term radon concentration changes in a geothermal area for correlation with volcanic earthquakes and reservoir temperatures:A case study from Mt. Aso, southwestern Japan[J]. Journal of Volcanology and Geothermal Research, 2014, 275(3):85-102.
Lewicki J L, Brantley S L. CO2 degassing along the San Andreas Fault, Parkfield, California[J]. Geophysical Research Letters, 2000, 27(1):5-8.
Li Y, Du J G, Wang X, et al. Spatial Variations of Soil Gas Geochemistry in the Tangshan Area of Northern China[J]. Terrestrial Atmospheric and Oceanic Sciences, 2013, 24(3):323-332.
Morawska L, Phillips C R. Dependence of the radon emanation coeffcient on radium distribution and internal structure of the material[J]. Geochimica Et Cosmochimica Acta, 1993, 57(8):1783-1797.
Nazaroff W W. Radon transport from soil to air[J]. Reviews of Geophysics, 1992, 30(2):137-160.
Neri M, Behncke B, Burton M, et al. Continuous soil radon monitoring during the July 2006 Etna eruption[J]. Geophysical Research Letters, 2006, 33(24):L24316.
Perrier F, Richon P, Byrdina S, et al. A direct evidence for high carbon dioxide and radon-222 discharge in Central Nepal[J]. Earth and Planetary Science Letters, 2009, 278(3/4):198-207.
Reddy D V, Nagabhushanam P, Sukhija B S, et al. Continuous radon monitoring in soil gas towards earthquake precursory studies in basaltic region[J]. Radiation Measurements, 2010, 45(8):935-942.
Raich J W, Schlesinger W H. The global carbon dioxide flux in soil respiration and its relationship to vegetation and climate[J]. Tellus B, 1992, 44(2):81-99.
Sugisaki R, Ido M, Takeda H, et al. Origin of Hydrogen and Carbon Dioxide in Fault Gases and Its Relation to Fault Activity[J]. Journal of Geology, 1983, 91(3):239-258.
Walia V, Su T C, Fu C C, et al. Spatial variations of radon and helium concentrations in soil-gas across the Shan-Chiao fault, Northern Taiwan[J]. Radiation Measurements, 2005, 40(2/6):513-516.
Wilkening M, Clements W E, Stanley D. Radon-222 flux measurements in widely separated regions, the natural radiation environment Ⅱ[C]//USAEC Report Conf-720805-P2. Springfield:National Technical Information Service, 1972.
Yang T F, Chou C Y, Chen C H, et al. Exhalation of radon and its carrier gases in SW Taiwan[J]. Radiation Measurements, 2003, 36(1/2):425-429.
Yuce G, Fu C C, D'Alessandro W, et al. Geochemical characteristics of soil radon and carbon dioxide within the Dead Sea Fault and Karasu Fault in the Amik Basin (Hatay), Turkey[J]. Chemical Geology, 2017, 469:129-146.
Zhou X C, Chen Z, Cui Y J. Environmental impact of CO2, Rn, Hg degassing from the rupture zones produced by Wenchuan MS 8.0 earthquake in western Sichuan, China[J]. Environmental Geochemistry and Health, 2016, 38(5):1067-1082.