地震属性分析技术在地球物理勘探领域的广泛应用,启发研究人员将其应用于人工源宽角反射/折射深地震测深剖面的资料预处理和震相识别。采用札达-泉水沟深地震测深资料,提取振幅、信噪比、主频、瞬时带宽、瞬时高频能量等地震属性参数,分析不同参数的物理含义,挑选其中对界面变化敏感的参数,对深地震测深资料进行预处理,并利用P波和S波的联合扫描,提高震相识别的准确性。走时互换结果显示,采用地震属性参数可有效提高震相拾取的准确性,进而提高后续地壳速度结构反演结果的精度。
With the widespread application of seismic attribute analysis technology in the field of geophysical exploration, it guides us to apply it to the data preprocessing and seismic facies identification of wide-angle reflection/refraction deep seismic sounding profiles of artificial sources. Based on the Zhada-Quanshuigou deep seismic sounding data, this paper extracts seismic attributes such as amplitude, signal-to-noise ratio, dominant frequency, instantaneous bandwidth, and instantaneous high-frequency energy, analyzes the physical meaning of different attributes, and selects seismic attributes that are sensitive to interface changes. Then we preprocess deep seismic sounding data and use P-wave and S-wave joint scanning to improve the accuracy of seismic facies identification. The results of traveltime interchange show that the application of seismic attribute parameters can effectively improve the accuracy of seismic facies picking and then improve the accuracy of subsequent crustal velocity structure inversion.
2020,41(5): 10-17 收稿日期:2020-01-06
DOI:10.3969/j.issn.1003-3246.2020.05.002
基金项目:中国地震台网中心青年科技基金(项目编号:QNJJ201813)
作者简介:王晓(1989-),女,博士研究生,工程师,主要从事地壳结构研究及地电数据的分析处理。E-mail:wangxiao@seis.ac.cn
参考文献:
李海兵,Valli F,刘敦一,等. 喀喇昆仑断裂的形成时代:锆石SHRIMP U-Pb年龄的制约[J]. 科学通报,2007,52(4):438-447.
李海兵,Valli F,Arnaud N,等. 喀喇昆仑断裂带走滑过程中伴随的快速隆升作用:热年代学证据[J]. 岩石学报,2008,24(7):1552-1556.
吕公河,于常青,董宁. 叠后地震属性分析在油气田勘探开发中的应用[J]. 地球物理学进展,2006,21(1):161-166.
王利田,苏小军,管仁顺,等. 地震属性分析在彩16井区储层预测中的应用[J]. 地球物理学进展,2006,21(3):922-925.
王晓,周小鹏,张新彦,白志明,滕吉文. 上地壳纵横波速度结构相关反演成像方法[J]. 地球物理学报,2015,58(10):3553-3570.
许志琴,李海兵,唐哲民,等. 大型走滑断裂对青藏高原地体构架的改造[J]. 岩石学报,2011,27(11):3157-3170.
张延玲,杨长春,贾曙光. 地震属性技术的研究和应用[J]. 地球物理学进展,2005,20(4):1129-1133.
Caldwell W B, Klemperer S L, Rai S S, et al. Partial melt in the upper-middle crust of the northwest Himalaya revealed by Rayleigh wave dispersion[J]. Tectonophysics, 2009, 477(1/2):58-65.
Contreras A, Torres-Verdin C, Fasnacht T. Sensitivity analysis of data-related factors controlling AVA simultaneous inversion of partially stacked seismic amplitude data:Application to deepwater hydrocarbon reservoirs in the central Gulf of Mexico[J]. Geophysics, 2007, 72(1):C19-C29.
Cooke D J. Techniques for improving seismic attribute versus well log property cross plots-with synthetic and real data examples from Prudhoe Bay Field[C]//1999 SEG Annual Meeting. Houston:SEG, 1999:69-72.
Lacassin R, Valli F, Arnaud N, et al. Large-scale geometry, offset and kinematic evolution of the Karakorum fault, Tibet[J]. Earth and Planetary Science Letters, 2004, 219(3/4):255-269.
Murphy M A, Yin A, Kapp P, et al. Southward propagation of the Karakoram fault system, southwest Tibet:Timing and magnitude of slip[J]. Geology, 2000, 28(5):451-454.
Pearson R A, Hart B S. Convergence of 3-D seismic attribute-based reservoir property prediction and geologic interpretation as a risk reduction tool:A case study from a Permian Intraslope basin[C]//1999 SEG Annual Meeting. Houston:SEG, 1999:896-899.
Sheriff R E. Structural interpretation of seismic data[M]. Tulsa:AAPG, 1982:73.
Steeghs P. Fast computation of the sliding-window radon transform applied to 3-D seismic attribute extraction[C]//1999 SEG Annual Meeting. Houston:SEG, 1999:1146-1149.
Taner M T, Schuelke J S, Doherty R, et al. Seismic attributes revisited[C]//1994 SEG Annual Meeting. Los Angeles, California:SEG, 1994, 13:1104-1106.
Valli F, Arnaud N, Leloup P H, et al. Twenty million years of continuous deformation along the Karakorum fault, western Tibet:a thermochronological analysis[J]. Tectonics, 2007, 26(4):TC4004, doi:10.1029/2005TC001913.
Wittlinger G, Vergne J, Tapponnier P, et al. Teleseismic imaging of subducting lithosphere and Moho offsets beneath western Tibet[J]. Earth and Planetary Science Letters, 2004, 221(1/4):117-130.