采用基于概率的完整性震级(PMC)方法,选取上海测震台网13个地震台站及周边省市地震台2008-2019年记录的171个地震,计算各地震台及上海测震台网地震监测能力,并模拟增加新的地震台站后台网监测能力的变化。结果显示:①地表基岩台的监测能力较深井台强,且受噪声和地铁影响,市区深井台监测能力较低;②整体上,台站密布的松江和青浦地区,地震监测能力较强,最小完整性震级为ML 0.7。台站稀疏的浦东、奉贤、崇明地区,地震监测能力较弱,最小完整性震级为ML 1.3;③若在上海南部增设奉贤海湾台,可整体提高上海测震台网的监测能力。
We use 171 earthquakes recorded by 13 seismic stations of the Shanghai seismic network and seismic stations in the surrounding area from 2008 to 2019 to evaluate the monitoring capacity of the stations based on the Probability-based Magnitude of Completeness (PMC) method and study the changes in monitoring capacity if new stations were built. The result shows that surface bedrock stations have better monitoring ability than deep well stations and the downtown deep well stations have bad monitoring ability because of noises and subways. On the whole aspect, Songjiang and Qingpu regions where seismic stations are dense have higher monitoring capacity with the Mc of ML 0.7; while Pudong, Fengxian, and Chongming regions have lower monitoring capacity with the Mc of ML 1.3. If we build Fengxian gulf station in the south, the whole monitoring capacity of the Shanghai Seismic Network will enhance.
2020,41(5): 18-24 收稿日期:2020-01-17
DOI:10.3969/j.issn.1003-3246.2020.05.003
基金项目:上海市地震局科技专项(项目编号:2019专8)
作者简介:王鹏(1988-),男,湖北荆门人,工程师,从事地震监测相关研究工作。E-mail:284634954@qq.com
*通讯作者:毕波(1977-),男,上海市人,工程师,从事数字地震学相关研究工作。E-mail:18598732@qq.com
参考文献:
蒋长胜,房立华,韩立波,等. 利用PMC方法评估地震台阵的地震监测能力——以西昌流动地震台阵为例[J]. 地球物理学报,2015,58(3):832-843.
李智超,黄清华. 基于概率完备震级评估首都圈地震台网监测能力[J]. 地球物理学报,2014,57(8):2584-2593.
刘芳,蒋长胜,张帆,等. 内蒙古区域地震台网监测能力研究[J]. 地震学报,2014,36(5):919-929.
王鹏,郑建常,李铂. 基于PMC方法的山东省测震台网监测能力评估[J]. 地球物理学进展,2016,31(6):2408-2414.
徐伟进,高孟潭. 中国大陆及周缘地震目录完整性统计分析[J]. 地球物理学报,2014,57(9):2802-2812.
尹继尧,朱元清. 上海数字地震台网监测能力评估[J]. 地震研究,2011,34(4):476-481.
Gutenberg B, Richter C F. Frequency of earthquakes in California[J]. Bull Seismol Soc Amer, 1944, 34(4):185-188.
Mignan A, Werner M J, Wiemer S, et al. Bayesian estimation of the spatially varying completeness magnitude of earthquake catalogs[J]. Bulletin of the Seismological Society of America, 2011, 101(3):1371-1385.
Mignan A, Jiang C, Zechar J D, Wiemer S, Wu Z, Huang Z. Completeness of the Mainland China earthquake catalog and implications for the setup of the China earthquake forecast testing center[J]. Bulletin of the Seismological Society of America, 2013, 103(2A):845-859, doi:10.1785/0120120052.
Nanjo K Z, Schorlemmer D, Woessner J, et al. Earthquake detection capability of the Swiss Seismic Network[J]. Geophysical Journal International, 2010.
Ogata Y, Katsura K. Analysis of temporal and spatial heterogeneity of magnitude frequency distribution inferred from earthquake catalogues[J]. Geophysical Journal International, 1993, 113(3):727-738.
Rydelek P A, Sacks I S. Testing the completeness of earthquake catalogues and the hypothesis of self-similarity[J]. Nature, 1989, 337(6204):251-253.
Schorlemmer D, Woessner J. Probability of detecting an earthquake[J]. Bull Seismol Soc Am, 2008, 98(5):2103-2117.
Sereno Jr T J, Bratt S R. Seismic detection capability at NORESS and implications for the detection threshold of a hypothetical network in the Soviet Union[J]. Journal of Geophysical Research:Solid Earth, 1989, 94(B8):10397-10414.
Wiemer S, Wyss M. Minimum magnitude of completeness in earthquake catalogs:Examples from Alaska, the Western United States, and Japan[J]. Bulletin of the Seismological Society of America, 2000, 90(4):859-869.
Wiemer S, Wyss M. Mapping spatial variability of the frequency-magnitude distribution of earthquakes[J]. Advances in Geophysics, 2002, 45:259-302, I-V.