根据各大网站地震目录和前人研究成果,分析全球地震台网与地震台阵、我国区域台网与地震台阵的监测能力,阐述了地震台阵与密集台网/台阵的区别。研究表明,对同一地区所检测的地震数,地震台阵是地震台网的3-10倍,而震级下限可降低1.2-2级。一般情况下,以微弱信号检测为目的的地震台阵监测能力均优于以结构研究为目的的密集台网/台阵,2种台阵是目的、性质、孔径、形状、台间距、技术手段、研究方法均不同的监测系统。
Based on the earthquake catalogs of major websites and previous research results, we analyze the monitoring capabilities of global seismic networks and arrays, remote seismic arrays and regional arrays, and Chinese seismic arrays, and explain the differences between seismic arrays and dense networks/arrays. The study shows that for the number of earthquakes detected in the same area, the seismic array is 3-10 times higher than the seismic network, and the lower limit of magnitude can be decreased by 1.2-2 magnitudes. In general, the monitoring capability of a seismic array for weak signal detection is better than that of a dense network/array for structural research.
2020,41(6): 3-14
DOI:10.3969/j.issn.1003-3246.2020.06.001
基金项目:IMS台阵测试与评估(合同号:2016-1154)
作者简介:郝春月(1973-),女,中国地震局地球物理所副研究员,主要从事地震台阵技术的应用与研究
参考文献:
郝春月,郑重,郭燕平,周公威,张爽. 中国数字地震台网(CDSN)和IMS/PS台阵的监测定位能力评估[J]. 地震地磁观测与研究,2006,27(2):56-63.
郝春月. IMS的建设背景[J]. 国际地震动态,2016,(9):40-47.
郝春月,李丽,郑重. 基于PS12台阵的微弱爆炸信号识别技术[J]. 爆炸与冲击,2017,37(5):822-828.
李俊伦,徐建,谭玉阳,古宁,张海江. 基于密集台阵的四川长宁昭通页岩气开发区域浅部地震研究及速度结构成像[C]//中国石油学会2019年物探技术研讨会论文集. 成都:石油地球物理勘探编辑部,2019:920-923.
李敏娟,沈旭章,张元生,刘旭宙,梅秀苹. 基于密集台阵的青藏高原东北缘地壳精细结构及九寨沟地震震源区结构特征分析[J]. 地球物理学报,2018,61(5):2075-2087. doi:10.6038/cjg2018L0720.
李娜,王伟涛,王宝善. 基于云计算的九分量噪声互相关函数计算及其在China Array密集台阵数据的应用[J]. 中国地震,2018,34(2):244-257.
鲁来玉,何正勤,丁志峰,姚志祥. 华北科学探测台阵背景噪声特征分析[J]. 地球物理学报,2009,52(10):2566-2572. doi:10.3969/j.issn.0001-5733.2009.10.015.
苏亚军,靳平,李莎,毛颖. 国际监测系统(IMS)对内华达地区地震事件的检测和定位能力分析[J]. 地震学报,2012,34(3):323-330.
孙天为. 利用密集台阵研究宾川沉积层及地壳结构[D]. 北京:中国地震局地球物理研究所,2019.
田原,瞿辰,王伟涛,于常青,李丽. 四川盐源盆地短周期密集台阵背景噪声分布特征分析[J]. 地球物理学报,2020,63(6):2248-2261. doi:10.6038/cjg2020N0063.
王海军,王洪,王娟,李靖,邱宏茂. IMS地震台站数据模拟发送系统[J]. 核电子学与探测技术,2005,25(2):177-180.
王凯明. 基于密集台阵的背景噪声聚束分析成像及其在青藏高原东北缘的应用[D]. 北京:中国地震局地球物理研究所,2019.
王伟涛,王宝善. 由密集台阵记录和互相关技术提取全球体波信号[C]//2015中国地球科学联合学术年会论文集(二十二)——专题54地震面波、背景噪声及尾波干涉法研究地下介质结构及其变化. 北京:中国地球物理学会,2015.
袁松湧,宋丽莉,杨微. 地震科学探测台阵无线监控技术[J]. 国际地震动态,2009,(3):12-19.
周玲. 新疆和田小孔径台阵监测能力分析[J]. 地震工程学报,2017,39(Z1):113-116. doi:10.3969/j.issn.1000-0844.2017.Supp.0113.
Arlitt R, Kissling E, Ansorge J, TOR Working Group. Three-dimensional crustal structure beneath the TOR array and effects on teleseismic wavefronts[J]. Tectonophysics, 1999, 314(1/2/3):309-319.
Bao X Y, Dalton C A, Jin G, Gaherty J B, Shen Y. Imaging Rayleigh wave attenuation with USArray[J]. Geophysical Journal International, 2016, 206(1):241-259. doi:10.1093/gji/ggw151.
Berteussen K A. The origin of slowness and azimuth anomalies at large arrays[J]. Bull Seismol Soc Am, 1976, 66(3):719-741.
Birtill J W, Whiteway F E. The application of phased arrays to the analysis of seismic body waves[J]. Philos Trans R Soc London, Ser A, 1965, 258(1091):421-493.
Bondár I, North R G, Beall G. Teleseismic slowness-azimuth station corrections for the international monitoring system seismic network[J]. Bulletin of the Seismological Society of America, 1999, 89(4):989-1003.
Capon J. Signal processing and frequency-wavenumber spectrum analysis for a large aperture seismic array[J]. Methods Comput Phys:Adv Res Appl, 1973, 13:1-59.
Cotte N, Pedersen H A, Campillo M, Farra V, Cansi Y. Off-great-circle propagation of intermediate-period surface waves observed on a dense array in the French alps[J]. Geophys J Int, 2000, 142(3):825-840.
Der Z A, Shumway R H, Lees A C. Frequency domain coherent processing of regional seismic signals at small arrays[J]. Bull Seismol Soc Am, 1988, 78(1):326-338.
Doornbos D J, Husebye E S. Array analysis of PKP phases and their precursors[J]. Phys Earth Planet Inter, 1972, 5:387-399.
Douglas A, Bowers D, Marshall P D, et al. Putting nuclear-test monitoring to the test[J]. Nature, 1999, 398(6727):474-475.
Frosch R A, Green P. E. The concept of a large aperture seismic array[J]. Proc R Soc London, Ser A, 1966, 290(1422):368-384.
Gibbons S J, Ringdal F, Kværna T. Detection and characterization of seismic phases using continuous spectral estimation on incoherent and partially coherent arrays[J]. Geophys J Int, 2008, 172(1):405-421. doi:10.1111/j.1365-246X.2007.03650.x.
Gibbons S J, Schweitzer J, Ringdal F, Kværna T, Mykkeltveit S, Paulsen B. Improvements to seismic monitoring of the European Arctic using three-component array processing at SPITS[J]. Bull Seismol Soc Am, 2011, 101(6):2737-2754. doi:10.1785/0120110109.
Gibbons S J, Ringdal F. Seismic monitoring of the north korea nuclear test site using a multichannel correlation detector[J]. IEEE Transactions on Geoscience and Remote Sensing, 2012, 50(5):1897-1909.
Gibbons S J. The applicability of incoherent array processing to IMS seismic arrays[J]. Pure and Applied Geophysics, 2014, 171(3/5):377-394. doi:10.1007/s00024-012-0613-2.
Gibbons S J, Schweitzer J, Kværna T, Roth M. Enhanced detection and estimation of regional S-phases using the 3-component ARCES array[J]. J Seismol, 2019, 23(2):341-355. doi:10.1007/s10950-018-9809-y.
Goldstein P, Walter W R, Zandt G. Upper mantle structure beneath central Eurasia using a source array of nuclear explosions and waveforms at regional distances[J]. J Geophys Res Solid Earth, 1992, 97(B10):14097-14113.
Gu N, Wang K D, Gao J, Ding N, Yao H J, Zhang H J. Shallow crustal structure of the tanlu fault zone near Chao lake in Eastern China by direct surface wave tomography from local dense array ambient noise analysis[J]. Pure and Applied Geophysics, 2019, 176(3):1193-1206. doi:10.1007/s00024-018-2041-4.
Hao C Y, Zheng Z. P-wave back-azimuth and slowness anomalies observed by an IMS seismic array LZDM[J]. Bull Seismol Soc Am, 2010, 100(2):657-669. doi:10.1785/0120090059.
Harjes H P. Design and siting of a new regional array in Central Europe[J]. Bull Seismol Soc Am, 1990, 80(6B):1801-1817.
Harjes H P. Siting survey and configuration optimization of a new regional array in the Federal Republic of Germany[R]. 01731-5000, Massachusetts:Geophysics Laboratory, Air Force Systems Command United States Air Force, Hanscom Air Force Base, 1990. Harris D B. Uncertainty in direction estimation:a comparison of small arrays and three-component stations[R]. UCID-19589-82 ON:DE83002475, Lawrence Livermore National Lab., CA, USA:Department of Energy, 1982.
Hedlin M A H, Minster J B, Orcutt J A. Beam-stack imaging using a small aperture array[J]. Geophys Res Lett, 1991, 18(9):1771-1774.
Husebye E S, Ruud B O. Array seismology-past, present and future developments[M]//Litehiser J J. Observatory Seismology:A Centennial Symposium for the Berkeley Seismographic Stations. Berkeley:University of California Press, 1989:124-155.
Ingate S F, Husebye E S, Christoffersson A. Regional arrays and optimum data processing schemes[J]. Bull Seismol Soc Am, 1985, 75(4):1155-1177.
Kanasewich E R, Ellis R M, Chapman C H, Gutowski P R. Seismic array evidence of a core boundary source for the Hawaiian Linear Volcanic Chain[J]. J Geophys Res, 1973, 78(8):1361-1371.
Keen C G, Montgomery J, Mowat W M H, Mullard J E, Platt D C. British seismometer array recording systems[J]. Radio Electron Eng, 1965, 30(5):297-306.
Koper K D, de Foy B, Benz H. Composition and variation of noise recorded at the Yellowknife Seismic Array, 1991-2007[J]. Journal of Geophysical Research, 2009, 114(B10):B10310. doi:10.1029/2009JB006307.
Kværna T, Ringdal F. Detection capability of the seismic network of the international monitoring system for the comprehensive nuclear-test-ban treaty[J]. Bull Seismol Soc Am, 2013, 103(2A):759-772. doi:10.1785/0120120248.
Murphy J R, Rodi W L, Johnson M, Sultanov D D, Bennett T J, Toksöz M N, Ovtchinnikov V M, Barker B, Reiter D, Rosca A, Shchukin Y. Calibration of international monitoring system (IMS) stations in Central and Eastern Asia for improved seismic event location[J]. Bull Seismol Soc Am, 2005, 95(4):1535-1560. doi:10.1785/0120040087.
Rost S, Weber M. The upper mantle transition zone discontinuities in the Pacific as determined by short-period array data[J]. Earth and Planetary Science Letters, 2002b, 204(3/4):347-361.
Rost S, Thorne M S, Garnero E J. Imaging global seismic phase arrivals by stacking array processed short-period data[J]. Seismological Research Letters, 2006, 77(6):697-707.
Schlindwein V. A quantitative study of the site effects observed at the GERESS array[J]. Bull Seismol Soc Am, 2003, 93(3):1051-1064. doi:10.1785/0120020178.
Thomas C, Kendall J M, Weber M. The lowermost mantle beneath Northern Asia-I. Multi-azimuth studies of a D″ heterogeneity[J]. Geophys J Int, 2002, 151(1):279-295.
Tian X F, Yang Z X, Wang B S, Yao H J, Wang F Y, Liu B F, Zheng C L, Gao Z Y, Xiong W, Deng X G. 3D seismic refraction travel-time tomography beneath the middle-lower Yangtze River region[J]. Seismological Research Letters, 2018, 89(3):992-1002. doi:10.1785/0220170245.
Wang K M, Lu L Y, Maupin V, Ding Z F, Zheng C, Zhong S J. Surface wave tomography of Northeastern Tibetan Plateau using beamforming of seismic noise at a dense array[J]. Journal of Geophysical Research:Solid Earth, 2020, 125(4):e2019JB018416. doi:10.1029/2019JB018416.
Wang W L, Wu J P, Fang L H, et al. Sedimentary and crustal thicknesses and Poisson's ratios for the NE Tibetan Plateau and its adjacent regions based on dense seismic arrays[J]. Earth and Planetary Science Letters, 2017, 462:76-85.
Wei Y B, Tian X B, Duan Y H, Tian X F. Imaging the topography of crust-mantle boundary from a high-density seismic array beneath the middle-lower Yangtze River, Eastern China[J]. Seismological Research Letters, 2018, 89(5):1690-1697. doi:10.1785/0220180045.
Whiteway F E. The use of arrays for earthquake seismology[J]. Proc R Soc London, Ser A, 1966, 290(1422):328-342.
Wu G X, Pan L, Wang J N, Chen X F. Shear velocity inversion using multimodal dispersion curves from ambient seismic noise data of USArray transportable array[J]. Journal of Geophysical Research:Solid Earth, 2020, 125(1):e2019JB018213. doi:10.1029/2019JB018213.
Wuster J. GSETT-3:evaluation of the detection and location capabilities of an experimental global seismic monitoring system[J]. Bull Seismol Soc Am, 2000, 90(1):166-186.