在岱海断陷带2条活动断裂上布设了4个用于观测土壤H2的剖面。在2017年5月底测量土壤H2浓度,布设测线8条,测点共122个。测量结果表明,岱海断陷带2条活动断裂上土壤H2的浓度在断裂两侧明显高于断裂河沟谷底测点。
H2 in soil gas was measured at one hundred and twenty-two sites in the two faults around Daihai graben, in May 2017. The results indicated that the H2 concentrations in the soil gas from the two faults are significantly higher in Daihai graben than those on both sides of the faults. In a word, analyzing the relationship between fault activity and H2 in soil gas in Daihai graben can greatly increase the capability of seismic monitoring.
2021,42(1): 76-83 收稿日期:2020-01-19
DOI:10.3969/j.issn.1003-3246.2021.01.011
基金项目:内蒙古自治区地震局局长基金课题(项目编号:2018JC08);2017年度震情跟踪定向工作任务(项目编号:2017020301)
作者简介:刘永梅(1983—),女,工程师,本科,主要从事地震监测工作。E-mail:bxiiwangg@126.com
*通讯作者:丁风和,男,高级工程师,主要从事地震监测、预测研究工作。E-mail:dingfenghe@126.com
参考文献:
毕珉烽. 岱海断陷带活动性与地震危险性研究[D]. 北京:中国地质大学(北京),2012.
车用太,刘耀炜,何钄. 断层带土壤气中H2观测——探索地震短临预报的新途径[J]. 地震,2015,35(4):1-10.
杜建国,刘连柱,康春丽. 地震活动中地壳深部流体的作用研究进展[J]. 地球科学进展,1997,12(5):416-421.
蒋凤亮,李桂如,王基华,等. 地震地球化学[M]. 北京:地震出版社,1989:11,51-61.
江娃利,谢新生,王焕贞,等. 山西大同盆地恒山北缘断裂全新世古地震活动[J]. 中国地震,2003,19(1):8-19.
李营,杜建国,王富宽,等. 延怀盆地土壤气体地球化学特征[J]. 地震学报,2009,31(1):82-91.
冉勇康,陈立春,杨晓平,等. 鄂尔多斯地块北缘主要活动断裂晚第四纪强震复发特征[J]. 中国科学(D辑),2003,33(Z1):135-143.
邵济安,赵谊,张福松,等. 黑龙江省中西部地球排气与地震活动的探讨[J]. 岩石学报,2010,26(12):3 651-3 656.
孙小龙,王广才,邵志刚,等. 海原断裂带土壤气与地下水地球化学特征研究[J]. 地学前缘,2016,23(3):140-150.
孙小龙,邵志刚,司学芸,等. 断层带土壤氢气浓度测量及其影响因素[J]. 大地测量与地球动力学,2017,37(4):436-440.
胁田宏. 东京大学理学部地震地球化学10年工作[C]//日本地震地球化学研究. 北京:海洋出版社,1993:9-11.
周晓成,王传远,柴炽章,等. 海原断裂带东南段土壤气体地球化学特征[J]. 地震地质,2011,33(1):123-132.
周晓成,杜建国,陈志,等. 地震地球化学研究进展[J]. 矿物岩石地球化学通报,2012,31(4):340-346.
周晓成,陈超,吕超甲,等. 首都圈西北部主要活动断裂土壤气中氢气(H2)地球化学特征[J]. 环境化学,2017,36(5):977-983.
Annunziatellis A, Beaubien S E, Bigi S, et al. Gas migration along fault systems and through the vadose zone in the Latera caldera (central Italy): implications for CO2 geological storage[J]. International Journal of Greenhouse Gas Control, 2008, 2(3): 353-372.
Evans J P, Forster C B, Goddard J V. Permeability of fault-related rocks, and implications for hydraulic structure of fault zones[J]. Journal of Structural Geology, 1997, 19(11): 1 393-1 404.
Kameda J, Saruwatari K, Tanaka H. H2 generation during dry grinding of kaolinite[J]. Journal of Colloid and Interface Science, 2004, 275(1): 225-228.
Kita I, Matsuo S, Wakita H, et al. D/H ratios of H2 in soil gases as an indicator of fault movements[J]. Geochemical Journal, 1980, 14(6): 317-320.
Kita I, Matsuo S, Wakita H. H2 generation by reaction between H2O and crushed rock: an experimental study on H2 degassing from the active fault zone[J]. Journal of Geophysical Research: Solid Earth, 1982, 87(B13): 10 789-10 795.
Lombardi S, Voltattorni N. Rn, He and CO2 soil gas geochemistry for the study of active and inactive faults[J]. Appl Geochem, 2010, 25(8): 1 206-1 220.
Mayhew L E, Ellison E T, McCollom T M, et al. Hydrogen generation from low-temperature water–rock reactions[J]. Nature Geoscience, 2013, 6(6): 478-484.
Poissant L, Constant P, Pilote M, et al. The ebullition of hydrogen, carbon monoxide, methane, carbon dioxide and total gaseous mercury from the Cornwall Area of Concern[J]. Science of the Total Environment, 2007, 381(1/2/3): 256-262.
Shangguan Z G, Huo W G. δD values of escaped H2 from hot springs at the Tengchong Rehai geothermal area and its origin[J]. Chinese Science Bulletin, 2002, 47(2): 148-150.
Sugisaki R, Ido M, Takeda H, et al. Origin of hydrogen and carbon dioxide in fault gases and its relation to fault activity[J]. The Journal of Geology, 1983, 91(3): 239-258.
Wakita H, Nakamura Y, Kita I, et al. Hydrogen release: new indicator of fault activity[J]. Science, 1980, 210(4 466): 188-190.
Ware R H, Roecken C, Wyss M. The detection and interpretation of hydrogen in fault gases[J]. Pure and Applied Geophysics, 1984, 122(2/3/4): 392-402.
Zhou X C, Du J G, Chen Z, et al. Geochemistry of soil gas in the seismic fault zone produced by the Wenchuan MS 8.0 earthquake, southwestern China[J]. Geochemical Transactions, 2010, 11: 5, doi: 10.1186/1467-4866-11-5.
Zhou X C, Chen Z, Cui Y J. Environmental impact of CO2, Rn, Hg degassing from the rupture zones produced by Wenchuan MS 8.0 earthquake in western Sichuan, China[J]. Environmental Geochemistry and Health, 2016, 38(5): 1 067-1 082.