系统梳理2020年4月1日四川石渠5.6级地震震前地震活动异常特征、地球物理观测异常以及区域构造情况,结果如下:①地震活动:石渠5.6级地震震中区域属于历史弱震区,震前出现前兆震群,也是其前震活动;②地球物理观测:出现8项异常,其中形变5项,电磁3项,且电磁异常对于该地震具有预测意义;③综合方法:地震发生前,震中附近存在Wq值异常。石渠5.6级地震发生在五道梁—长沙贡玛断裂带上,震源机制解显示为走滑型破裂。该序列类型为前震—主震—余震型,主震前存在明显的前震活动,余震较为丰富,序列活动呈阶段性衰减特征。综合分析认为,对于历史弱震区,可以通过分析地球物理观测异常和地震活跃时段的b值,为区域地震危险性评估提供依据,同时可利用地震序列参数h值和b值,对震后余震水平进行有效评估。
An MS 5.6 earthquake occurred in Shiqu County, Sichuan Province on April 1, 2020. The historical seismicity, geophysical observations before the mainshock, and tectonic background are systematically summarized in this paper. The results show that:① Seismicity anomalies: the epicenter area is a weak earthquake area and there are precursory earthquake swarms before the mainshock, which are also the foreshocks of the Shiqu MS 5.6 earthquake;② Geophysical observations: there are 8 geophysical anomalies, of which 5 are deformation anomalies and 3 are electromagnetic anomalies;③ The comprehensive method demonstrates that there is a Wq-value anomaly before the Shiqu MS 5.6 earthquake. The Shiqu MS 5.6 earthquake occurred on the Wudaoliang-Changshagongma fault zone, and the focal mechanism solution of the mainshock shows it is strike-slip faulting. The seismic activity of the Shiqu MS 5.6 earthquake sequence indicates that there is an obvious foreshock activity before the mainshock. Thus, the Shiqu MS 5.6 earthquake sequence is a foreshock–mainshock–aftershock sequence. Moreover, there are lots of aftershocks and the current daily cumulative rate of the sequence shows an episodic attenuation trend. The systematical analysis of the Shiqu MS 5.6 earthquake indicates that analyzing geophysical anomalies and b-value in seismically active periods can provide more information to effectively determine the seismic risk of a weak earthquake area. At the same time, by calculating the h-value and b-value of the earthquake sequence, the maximum aftershock magnitude can be effectively estimated.
2021,42(1): 139-154 收稿日期:2020-12-11
DOI:10.3969/j.issn.1003-3246.2021.01.020
基金项目:震情跟踪“b值空间扫描准确度的研究——以川滇地区为例”(项目编号:2021010127);中国地震台网中心青年科技基金“南北地震带6级地震中短期发震概率的估计”(项目编号:QNJJ202001);中国地震台网中心青年科技基金“云南地区浅层地壳速度结构反演”(项目编号:QNJJ202014)
作者简介:解孟雨(1991—),男,博士,工程师,从事地震预报研究工作。E-mail:xiemengyu@seis.ac.cn
参考文献:
戴苗,冯志生,刘坚,等. 南北地震带地磁加卸载响应比应用研究[J]. 地质科技情报,2017,36(4):222-227.
黄仕华,刘汉强. 青海达日县桑日麻地区发现道孚——炉霍断裂带北西延伸踪迹[J]. 四川地质学报,2006,26(3):129-137.
蒋海昆,傅征祥,刘杰,等. 中国大陆地震序列研究[M]. 北京:地震出版社,2007.
李辉. 青藏高原东北缘达日断裂中段晚第四纪活动性研究[D]. 成都:成都理工大学,2016.
梁明剑,杨耀,杜方,等. 青海达日断裂中段晚第四纪活动性与1947年M 73/4地震地表破裂带再研究[J]. 地震地质,2020,42(3):703-714.
刘正荣,钱兆霞,王维清. 前震的一个标志——地震频度的衰减[J]. 地震研究,1979,(4):1-9.
刘正荣. 根据地震频度衰减预报地震的工作细则[J]. 地震,1984,(1):35-37.
刘正荣,孔昭麟. 地震频度衰减与地震预报[J]. 地震研究,1986,9(1):1-12.
倪晓寅,胡淑芳,陈莹,等. 地磁垂直分量日变幅逐日比在南北带的应用[J]. 大地测量与地球动力学,2017,37(Z4):43-48.
苏琴,祝意青,徐锐,等. 芦山地震、鲁甸地震、康定地震前后三岔口地区地壳形变异常特征分析[J]. 大地测量与地球动力学,2017,37(6):568-574.
孙其政,国家地震局预测预防司. 测震学分析预报方法[M]. 北京:地震出版社,1997.
谭大诚,辛建村,王建军,等. 大地电场岩体裂隙模型的应用基础与震例解析[J]. 地球物理学报,2019,62(2):558-571.
王林瑛,陈佩燕,吴忠良,等. 前震特征及其识别研究[J]. 地震学报,2005,27(2):171-177.
王炜,宋先月. 人工神经网络在地震中短期预报中的应用[J]. 中国地震,2000,16(2):149-157.
谢成良,叶高峰,魏文博,等. 藏北高原主要断裂带电性结构特征[J]. 地球物理学报,2012,55(12):3 991-4 002.
Chen X W, Shearer P M. Analysis of foreshock sequences in California and implications for earthquake triggering[J]. Pure Appl Geophys, 2016, 173(1): 133-152.
Gulia L, Wiemer S. Real-time discrimination of earthquake foreshocks and aftershocks[J]. Nature, 2019, 574(7 777): 193-199.
Helmstetter A, Sornette D, Grasso J R. Mainshocks are aftershocks of conditional foreshocks: how do foreshock statistical properties emerge from aftershock laws[J]. J Geophys Res: Solid Earth, 2003a, 108(B10): 2 046.
Helmstetter A, Sornette D. Foreshocks explained by cascades of triggered seismicity[J]. J Geophys Res: Solid Earth, 2003b, 108(B10): 2 457.
Huang H, Meng L S, Bürgmann R, et al. Spatio-temporal foreshock evolution of the 2019 M 6.4 and M 7.1 Ridgecrest, California earthquakes[J]. Earth Planet Sci Lett, 2020, 551: 116 582.
Kisslinger C. Aftershocks and fault-zone properties[J]. Adv Geophys, 1996, 38: 1-36.
Marzocchi W, Sandri L. A review and new insights on the estimation of the b-value and its uncertainty[J]. Annals of Geophysics, 2003, 46(6): 1 271-1 282.
Mignan A, Woessner J. Estimating the magnitude of completeness for earthquake catalogs[M/OL]. Swiss Seismological Service: ETH Zurich,2012[2020-08-21].http://www.corssa.org/export/sites/corssa/.galleries/articles-pdf/Mignan-Woessner-2012-CORSSA-Magnitude-of-completeness.pdf.
Trugman D T, Ross Z E. Pervasive foreshock activity across southern California[J]. Geophys Res Lett, 2019, 46(15): 8 872-8 781.
van den Ende M P A, Ampuero J P. On the statistical significance of foreshock sequences in southern California[J]. Geophys Res Lett, 2020, 47(3): e2019GL086224.
Vidale J, Mori J, Houston H. Something wicked this way comes: clues from foreshocks and earthquake nucleation[J]. Eos, 2001, 82(6): 68.
Wiemer S, Wyss M. Minimum magnitude of completeness in earthquake catalogs: examples from Alaska, the western United States, and Japan[J]. Bull Seismol Soc Am, 2000, 90(4): 859-869.
Wyss M, Hasegawa A, Wiemer S, et al. Quantitative mapping of precursory seismic quiescence before the 1989, M 7.1 off-Sanriku earthquake, Japan[J]. Annali di Geofisica, 1999, 42(5): 851-869.