2021年3月19日西藏比如MS 6.1地震发生在班戈—安多地区的安多盆地南缘断裂附近,震源机制解反演结果显示,本次地震为近东西走向断层产生正断兼走滑型错动的结果,与区域构造特征一致;截止至4月15日,地震序列跟踪发现,主震与余震震级差为1.4,主震释放能量占序列的98.96%,表明6.1级主震释放了此次地震序列的绝大部分能量。通过总结地震周边的地震活动异常发现,震前存在6级地震空区及3级地震条带交汇等异常,同时存在地震发生率、b值、D值、RTL值、地震调制比等地震学参数异常,地球物理观测统计显示,震中300 km范围内无地球物理观测测项。此外,比如地震打破了大陆地区长时间的5级以上地震平静,对后续6级地震的发生具有一定预测意义。
On March 19, 2021, the Biru MS 6.1 earthquake occurred near the fault on the southern margin of the Amdo Basin in the Bange-Amdo region. The focal mechanism solution shows the strike direction of the seismogenic fault of the Biru earthquake is near east-west and the fault movement is characterized by tension and strike-slip, which is consistent with the regional structural characteristics. The analysis of the Biru earthquake sequence reveals that the magnitude difference between the mainshock and the largest aftershock is 1.4 and almost 98.96% of the entire energy of the earthquake sequence is released by the mainshock. The seismic anomalies before the Biru earthquake are systematically analyzed. An MS ≥ 6.0 seismic gap, two intersecting MS 3.0 seismic belts, several seismic parameter anomalies including earthquake occurrence rate, b value, D value, RTL, and seismic modulation ratio have been found before the mainshock. As to geophysical anomalies, there is no geophysical observation within 300 km of the epicenter. In addition, the Biru earthquake broke the long-term seismic quiescence of earthquakes above MS 5.0 in Chinese mainland, which can predict the occurrence of subsequent large earthquakes to some extent.
2021,42(2): 42-57 收稿日期:2021-04-20
DOI:10.3969/j.issn.1003-3246.2021.02.005
基金项目:地震科技星火计划攻关项目(项目编号:XH19055)
作者简介:田雷(1988-),男,硕士,主要从事地震地下流体方向的研究。E-mail:leitian@seis.ac.cn
参考文献:
陈翔,邓存华,沈道康,等. MSDP软件在单台数字地震记录分析中的应用[J]. 地震地磁观测与研究,2011,32(4):140-144.
陈彦含,吴庆举. 中国数字地震台网(CDSN)单台站P波偏振分[J]. 地震,2020,40(4):49-62.
代光辉,苗春兰,翟璐媛. 中国测震台网统一地震编目[J]. 中国地震,2019,35(1):192-203.
郭林旺,王焱,杨世英,等. 国家测震台MSDP单台数据处理软件常见故障排除[J]. 山西地震,2015,162(2):38-41.
韩颜颜,孟令媛,刘桂萍,等. 西北地区中强震前固体潮调制比时空特征分析[J]. 地震学报,2017,39(5):738-750.
黄清华. 一种评估地震前兆可信度的方法[J]. 地球物理学报,2005,48(3):637-642.
蒋海昆,侯海峰,周焕鹏,等. “区域-时间-长度算法”及其在华北中强地震中短期前兆特征研究中的应用[J]. 地震学报,2004,26(2):151-161.
蒋海昆,傅征祥,刘杰,等. 中国大陆地震序列研究[M]. 北京:地震出版社,2007.
姜祥华. 基于概率测量的地震发生率异常时空扫描[R]. 2020年度中国地震趋势研究报告,2020:164-166.
刘蒲雄,陈章立. 地震条带及其在地震预报中的作用[J]. 中国地震,1989,5(1):25-34.
刘月,吕晓健,田勤俭. 芦山MS 7.0地震前地震活动性分析及区域地震活动水平参数IRTL的应用[J]. 地学前缘,2017,24(2):220-226.
刘正荣,钱兆霞,王维清. 前震的一个标志—地震频度的衰减[J]. 地震研究,1979,(4):1-9.
刘正荣. 根据地震频度衰减预报地震的工作细则[J]. 地震,1984,(1):35-37.
刘正荣,孔昭麟. 地震频度衰减与地震预报[J]. 地震研究,1986,9(1):1-12.
陆远忠,吕悦军,郑月军. 短期预报中地震活动图像演化方法——地震短临预报的理论与方法[C]. 北京:地震出版社,1997:13-21.
马保起,苏刚,侯治华,等. 西藏安多北断裂晚第四纪活动的基本特征[J]. 地壳构造与地壳应力文集,2003,(15):38-44.
梅世蓉,薛艳,宋治平. 华北地区强震前地震活动长期演变过程的共性//地震短临预报的理论与方法[C]. 北京:地震出版社,1997:3-12.
孟令媛,苑争一,宋治平,等. 2020年1月19日新疆伽师MS 6.4地震总结[J]. 地震地磁观测与研究,2020,41(2):63-89.
平建军,张青荣,曹肃朝,等. 4级地震平静是华北地区强震前的一个重要震兆特征[J]. 地震学报,2001,23(4):441-448.
土登次仁,格桑尼玛,格桑卓玛,等. 谢通门地震窗活动频次与强震对应关系[J]. 地震地磁观测与研究,2020,41(2):31-36.
王炜. 华东地区五次中强震前地震危险度D值的异常变化[J]. 地震,1987,(1):19-27.
吴中海,赵希涛,吴珍汉,等. 西藏安多-错那湖地堑的第四纪地质、断裂活动及其运动学特征分析[J]. 第四纪研究,2005,25(4):490-502.
易桂喜,韩渭滨. 四川及邻近区强震前地震活动频度的变化特征[J]. 地震研究,2004,27(1):8-13.
易桂喜,闻学泽,苏有锦. 川滇活动地块东边界强震危险性研究[J]. 地球物理学报,2008,51(6):1 719-1 725.
中国地震局监测预报司. 测震分析预测技术方法工作手册[M]. 北京:地震出版社,2020:32-60,166-190.
Gulia L, Wiemer S. Real-time discrimination of earthquake foreshocks and aftershocks[J]. Nature, 2019, 574(7 777): 193-199.
Huang Q, Sobolev G A, Nagao T. Characteristics of the seismic quiescence and activation patterns before the M = 7.2 Kobe earthquake, January 17, 1995[J]. Tectonophysics, 1995, 337(1/2): 99-116.
Huang Q, Sobolev G A. Seismic quiescence prior to the 2000 M = 6.8 Nemuro Peninsula earthquake[J]. Proceedings of the Japan Academy.ser.b Physical & Biological Sciences, 2001, 77(1): 1-6.
Lockner D A, Beeler N M. Premonitory slip and tidal triggering of earthquakes[J]. Journal of Geophysical Research, 1999, 104(B9): 20 133-20 151.
Marzocchi W, Sandri L. A review and new insights on the estimation of the b-value and its uncertainty[J]. Annals of Geophysics, 2003, 46(6): 1 271-1 282.
Mignan A, Woessner J. Estimating the magnitude of completeness for earthquake catalogs[M/OL]. Swiss Seismological Service: ETH Zurich, 2012 [2020-08-21]. http://www.corssa.org/export/sites/corssa/.galleries/articles-pdf/Mignan-Woessner-2012-CORSSA-Magnitude-of-completeness.pdf.
Riviere J, Lv Z, Johnson P A, et al. Evolution of b-value during the seismic cycle: Insights from laboratory experiments on simulated faults[J]. Earth and Planetary Science Letters, 2018, 482: 407-413.
Sobolev G A, Tyupkin Y S. Low-seismicity precursors of large earthquakes in Kamchatka[J]. Journal of Volcanology and Seismology, 1997, 18: 433-446.
Wiemer S, Wyss M. Minimum magnitude of completeness in earthquake catalogs: examples from Alaska, the western United States, and Japan[J]. Bull Seismol Soc Am, 2000, 90(4): 859-869.
Wyss M, Hasegawa A, Wiemer S, et al. Quantitative mapping of precursory seismic quiescence before the 1989, M 7.1 off-Sanriku earthquake, Japan[J]. Annali di Geofisica, 1999, 42(5): 851-869.
Yu H Z, Cheng J, Zhang X T, et al. Multi-Methods Combined Analysis of the Future Earthquake Potential [J]. Pure and Applied Geophysics, 2013, 170 (1/2): 173-183.