以井—含水层系统潮汐理论为基础,利用Baytap-G潮汐分析程序计算鲁14井数字化水位的潮汐响应特征参数,提取井水位潮汐因子和相位差,分析远场大震前后井水位潮汐响应特征参数的变化情况,同时对固体潮和气压影响量进行分离,以期深入了解井水位微动态变化特征,为该井水位观测资料的动态评价和效能评估提供参考。结果表明:鲁14井潮汐地下水流类型以径向流为主,潮汐因子和相位差变化相对稳定,但受远场大震影响显著,其含水层渗透性随潮汐参数的增大(减小)而增大(减小);地震波作用可使含水层渗透性发生变化,但并非导致含水层渗透性变化的主要因素。
Based on the tidal theory of the well-aquifer system, the characteristic parameters of the tidal response of Lu 14 well digital water level observation were calculated using Baytap-G, the tidal factor and phase difference of the water level observation were also extracted. We analyzed the variation of characteristic parameters of the tidal response of well water levels before and after large teleseismic earthquakes. At the same time, the influence of earth tide and air pressure were separated in order to understand the micro-dynamic variation characteristics of well water level and provide a reference for dynamic evaluation and effectiveness evaluation of water level observation data. The results show that:the main type of tidal groundwater flow in the Lu 14 well is radial flow, and the change of tidal factor and the phase difference is relatively stable, but it is significantly affected by large teleseismic earthquakes, and its aquifer permeability increases (decreases) with the increase (decrease) of tidal parameters; seismic wave could change the aquifer permeability, but it is not the main factor leading to the change of aquifer permeability.
2021,42(5): 145-152 收稿日期:2020-09-04
DOI:10.3969/j.issn.1003-3246.2021.05.021
作者简介:王西宝(1981-),男,工程师,主要从事地下流体及地震监测工作。E-mail:jiguanlang@vip.163.com
参考文献:
晁洪太. 山东省地震监测志[M]. 北京:地震出版社,2008.
车用太,鱼金子. 地震地下流体学[M]. 北京:气象出版社,2006.
陈建民,张昭栋,杨林章,等. 地下水位固体潮响应的地震异常[J]. 地震,1994,14(1):73-78.
蒋骏,李胜乐,张雁滨,等. 地震前兆信息处理与软件系统:EIS 2000[M]. 北京:地震出版社,2000.
来贵娟. 井水位对气压和潮汐的响应特征与机理研究[D]. 北京:中国地震局地球物理研究所,2014.
廖欣. 承压井水位潮汐异常机理研究——以会理川-06井和川-18井为例[D]. 长沙:湖南师范大学,2010.
刘春平. 地壳应力与地下水动力响应[M]. 北京:地震出版社,2017.
陆远忠,李胜乐,邓志辉,等. 基于GIS的地震分析预报系统[M]. 成都:成都地图出版社,2002.
单维锋,李军,石云. Baytap-G潮汐分析辅助软件的设计与实现[J]. 大地测量与地球动力学,2017,37(6):644-646.
唐彦东. 井-含水层系统潮汐水流分析与应用研究[D]. 长沙:湖南师范大学,2015.
张昭栋,耿杰,高玉斌,等. 菏泽5.9级地震前豫01井水位对气压和固体潮响应的变化[J]. 地震研究,1994,17(2):164-170.
张昭栋,陈学忠,陈建民,等. 井水位固体潮加卸载响应比的地震短临前兆[J]. 地震学报,1997,19(2):174-180.
张昭栋,刘庆国,魏焕,等. 1989年大同6.1级地震前后地下水位固体潮加卸载响应比的变化[J]. 西北地震学报,1999a,21(4):356-362.
张昭栋,刘庆国,王忠民. 1998年张北6.2级地震前地下水位固体潮加卸载响应比的变化[J]. 地壳形变与地震,1999b,19(4):56-61.
张昭栋,郑金涵,耿杰,等. 地下水潮汐现象的物理机制和统一数学方程[J]. 地震地质,2002,24(2):208-214.
Elkhoury J E, Brodsky E E, Agnew D C. Seismic waves increase permeability[J]. Nature, 2006, 441(7097):1 135-1 138.
Hsieh P A, Bredehoeft J D, Farr J M. Determination of aquifer transmissivity from Earth tide analysis[J]. Water Resources Research, 1987, 23(10):1 824-1 832.
Tamura Y, Sato T, Ooe M, et al. A procedure for tidal analysis with a Bayesian information criterion[J]. Geophysical Journal International, 1991, 104(3):507-516.
Wang C Y. Liquefaction beyond the Near Field[J]. Seismological Research Letters, 2007, 78(5):512-517.
Wang C Y, Manga M. Hydrologic responses to earthquakes and a general metric[J]. Geofluids, 2010, 10(1/2):206-216.