利用2008—2017年夏县地震台断层气汞浓度观测数据,分析其异常变化与地震活动间的关联性,结合同时段震源机制解、库仑应力和由GPS基线推测的山西南部构造应力场、地壳形变特征,解释断层气汞浓度变化与区域构造活动间的关系。结果表明:①按照气汞浓度背景值变化幅度的不同,研究时段大致分为2010年10月—2011年7月、2013年3—12月、2015年1月—2017年5月等3个阶段,其中,第2、3阶段的背景值分别为第1阶段的8倍、60倍;②距测点200 km范围内4级左右地震发生前,气汞浓度往往表现为一组高值突跳变化,变化幅度高出平均背景值几倍至几十倍,震后很快降低至背景值附近;③气汞浓度趋势性上升和多组高值突跳变化、震源机制一致性参数高值、库仑应力积累、GPS压性作用增强和转折等,在时间上具有较好的准同步性,在空间上较吻合,表明夏县地震台断层气汞浓度异常与区域构造活动密切相关。
Based on the fault gas mercury data at the Xiaxian Seismic Station from 2008 to 2017, we analyzed the correlation between its abnormal changes and seismic activity. Then the relationship between the fault gas mercury anomaly and regional tectonic activity is explained combined with the focal mechanism solution, coulomb stress, tectonic stress field and crustal deformation characteristics in southern Shanxi inferred from GPS baselines. The results show that: ①According to the background value of gas mercury, the research period is roughly divided into three stages: October 2010-July 2011, March-December 2013, January 2015-May 2017, where the background values of the second and third stages are 8 times and 60 times that of the first stage, respectively; ②Before an earthquake with magnitude around 4 within 200 km from the measuring point, the concentration of gaseous mercury often showed a group of high-value sudden changes, the amplitude of which was several to dozens of times higher than the average background value, and soon decreased to the background after the earthquake; ③The increase of gas mercury concentration, the sudden change of multiple groups of high values, the high value of focal mechanism consistency parameters, the accumulation of Coulomb stress, the enhancement and turning point of GPS pressure, etc., have a good quasi-synchronicity in time and a good agreement in space, indicating that the abnormal gas mercury concentration of the Xiaxian Seismic Station is closely related to the regional tectonic activity.
2022,43(4): 61-72 收稿日期:2022-07-08
DOI:10.3969/j.issn.1003-3246.2022.04.009
基金项目:山西省应用基础研究计划面上青年基金(项目编号:201901D211549)
作者简介:李冬梅(1965—),女,硕士,高级工程师,主要从事地震监测预报研究工作。E-mail:ldm19@126.com
参考文献:
[1] 常姣, 李晓锐, 杨静, 等. 夏县中心地震台两台测汞仪观测对比分析[J]. 山西地震, 2019, (4): 13-17.
[2] 李金, 周龙泉, 龙海英, 等. 天山地震带(中国境内)震源机制一致性参数的时空特征[J]. 地震地质, 2015, 37(3): 792-803.
[3] 李立平. 汞临震异常的前兆机理[J]. 地震研究, 1993, (4): 359-366.
[4] 刘峡, 马瑾, 占伟, 等. 汶川地震前后山西断陷带的地壳运动[J]. 大地测量与地球动力学, 2013, 33(3): 5-10.
[5] 邵永新, 杨绪连, 李一兵. 海河隐伏活断层探测中土壤气氡和气汞测量及其结果[J]. 地震地质, 2007, 29(3): 627-636.
[6] 申春生, 魏家珍, 张振勋, 等. 壤中气汞前兆观测及其应用前景[J]. 地震, 1993, (4): 58-62.
[7] 石富强, 邵志刚, 徐晶, 等. 鄂尔多斯周缘历史地震库仑应力时空演化[J]. 国际地震动态, 2017, (8): 56-57.
[8] 宋美琴, 张淑亮, 李自红, 等. 山西省2014年度地震趋势研究报告, 2013.
[9] 魏柏林, 薛佳谋, 李富光, 等. 从测定壤中的气汞量来研究活断层[J]. 地震地质, 1988, 10(2): 88-92.
[10] 杨国华, 杨博, 张风霜, 等. 汶川地震对华北地区水平形变场影响及有关含义的讨论[J]. 地震, 2009, 29(1): 77-84.
[11] 杨静, 常姣, 李民, 等. 山西夏县中心地震台水化学观测地质环境概述[J]. 山西科技, 2019, 34(1): 48-51.
[12] 张炜, 申春生, 邢玉安, 等. 地震短临异常新指标的探索—汞浓度探测[J]. 中国地震, 1989, 5(4): 13-19.
[13] 张致伟, 周龙泉, 龙锋, 等. 汶川8.0和芦山7.0级地震序列应力场时空特征[J]. 地震地质, 2015, 37(3): 804-817.
[14] 朱艾斓, 解朝娣, 徐锡伟, 等. 鄂尔多斯块体周缘地区近期地震活动性与汶川地震应力触发作用的关系[J]. 地学前缘, 2010, 17(5): 206-214.
[15] 张肇诚, 陈棋福, 郑大林. 震例总结研究探讨[M]. 地震出版社, 2013, 14-15.
[16] Cao J J, Cheng S T, Luo S Y, et al. Study of particles in the ascending gas of ruptures caused by the 2008 Wenchuan earthquake[J]. Applied Geochemistry, 2017, 82: 38-46.
[17] Davidson R, Troki M. The fast iterated bootstrap[J]. Journal of Econometrics, 2020, 218(2): 451-475.
[18] Jin Y F, Wu Z H, Shen C S, et al. Earthquake prediction through the observation and measurement of mercury content variation in water[J]. Journal of Geochemical Exploration, 1989, 33(1//2/3): 195-202.
[19] Li S L, Guo Z, Chen Y J, et al. Lithospheric structure of the northern Ordos from ambient noise and teleseismic surface wave tomography[J]. Journal of Geophysical Research: Solid Earth, 2018, 123(8): 6 940-6 957.
[20] Liu Y W. Review of the research progress on the seismological science of underground fluid in China during last 40 years[J]. Earthquake Research in China, 2006, 22(3): 222-235.
[21] Michael A J. Stress rotation during the Coalinga aftershock sequence[J]. Journal of Geophysical Research: Solid Earth, 1987a, 92(B8): 7 963-7 979.
[22] Michael A J. Use of focal mechanisms to determine stress: a control study[J]. Journal of Geophysical Research: Solid Earth, 1987b, 92(B1): 357-368.
[23] Michael A J, Ellsworth W L, Oppenheimer D H. Coseismic stress changes induced by the 1989 Loma Prieta, California earthquake[J]. Geophysical Research Letters, 1990, 17(9): 1 441-1 444.
[24] Michael A J. Spatial variations in stress within the 1987 Whittier Narrows, California, aftershock sequence: New techniques and results[J]. Journal of Geophysical Research: Solid Earth, 1991, 96(B4): 6 303-6 319.
[25] Wang B, Liu Y W, Sun X L, et al. Hydrogeological and geochemical observations for earthquake prediction research in China: A brief overview[J]. Pure and Applied Geophysics, 2018, 175(7): 2 541-2 555.
[26] Wiemer S. A software package to analyze seismicity: ZMAP[J]. Seismological Research Letters, 2001, 72(3): 373-382.
[27] Zhang L, Liu Y W, Guo L S, et al. Isotope geochemistry of mercury and its relation to earthquake in the Wenchuan earthquake fault scientific drilling project Hole-1 (WFSD-1)[J]. Tectonophysics, 2014, 619/620: 79-85.