利用2020年5月1—7日乌加河地震台、乌力吉地震台波形数据,应用噪声功率谱概率密度(PDF)方法,计算2个台站的台基噪声,分析了2种观察环境下的台基噪声特征及影响因素。结果显示,在小于0.1 Hz频段乌力吉地震台台基噪声值明显大于乌加河地震台,说明地震计在小于0.1 Hz频段受环境温度影响的特征较显著;在大于1 Hz频段2个台站台基噪声值均有台阶性升高频段,这是由在该频段台基噪声受人为活动影响所致。
This article uses the waveform data of Wujiahe Central Seismic Station and Uliji Station from May 1 to May 7, 2020 and applies noise power spectrum probability density (PDF) method to calculate the background noise level of these two stations. The characteristics and influencing factors of station-background noise under two observation environments are studied. The results show that, in the frequency band below 0.1 Hz, the noise value of Wuliji station is significantly higher than that of Wujiahe station. It illustrates that the seismometer is significantly affected by ambient temperature in the frequency band below 0.1 Hz. In the frequency band higher than 1 Hz, the background noise of both stations show a stepped increase frequency band and this is due to the influence of man-made activities on the background noise of the station in this frequency band.
2022,43(4): 87-94 收稿日期:2020-11-18
DOI:10.3969/j.issn.1003-3246.2022.04.012
基金项目:内蒙古自治区地震局局长基金(项目编号:2020JC14、2022JC05)
作者简介:段昊(1993—),男,助理工程师,主要从事地震监测工作。E-mail:603505687@qq.com
参考文献:
[1] 安全, 翟浩, 赵铁锁. 地震计保温效能分析[J]. 地震地磁观测与研究, 2019, 40(2): 131-134.
[2] 安全, 赵艳红, 苏日亚, 等. 内蒙古区域背景噪声特征分析[J]. 华北地震科学, 2021, 39(1): 89-96.
[3] 葛洪魁, 陈海潮, 欧阳飚, 等. 流动地震观测背景噪声的台基响应[J]. 地球物理学报, 2013, 56(3): 857-868.
[4] 李雷, 钱文品, 邓存华, 等. 昆明地震台地面与井下地震观测背景噪声对比[J]. 地震地磁观测与研究, 2017, 38(5): 86-95.
[5] 刘旭宙, 沈旭章, 张元生, 等. 基于噪声概率密度函数的地震计观测性能对比[J]. 地震学报, 2018, 40(4): 461-470.
[6] 谢江涛, 林丽萍, 谌亮, 等. 地震台站台基噪声功率谱概率密度函数Matlab实现[J]. 地震地磁观测与研究, 2018, 39(2): 84-89.
[7] McNamara D E, Buland R P. Ambient noise levels in the continental United States[J]. Bull Seismol Soc Am, 2004, 94(4): 1 517-1 527.
[8] Peterson J. Observations and modeling of seismic background noise[R]. Albuquerque: U.S. Geological Survey, 1993.