系统梳理2021年9月4日新疆皮山MS 5.1和9月5日叶城MS 5.0地震发生前地震活动异常特征、地球物理观测异常以及区域构造情况,结果如下:①地震活动异常:皮山MS 5.1地震前出现前兆震群活动、阿图什至皮山4级地震平静、库车—沙雅4级地震窗口以及地震发生率指数异常;②地球物理观测异常:2项异常,其中形变1项,电磁1项,但与此次地震活动相关性较低;③震源机制:泽普断裂距皮山MS 5.1和叶城MS 5.0地震最近,间距分别约15 km和3 km,震源机制解显示2次地震均为逆冲型破裂;④序列分析:此次地震活动序列类型为震群型,主震前存在明显的前震活动,余震较为丰富,余震活动呈阶段性衰减特征。综合分析认为,2021年9月皮山MS 5.1和叶城MS 5.0地震组成震群型地震序列,震前地球物理观测异常较少,地震活动异常主要对发震地点具有预测意义。
Two earthquakes with MS≥5.0 occurred in Pishan and Yecheng of Xinjiang Uygur Autonomous Region on Sep.4 to Sep.5, 2021. This paper systematically summarized the historical seismicity, geophysical observations before the two events and tectonic background. The results show that: ① Seismicity anomalies: there are precursory earthquake swarms before the Pishan MS 5.1 earthquake, quiescence of earthquakes with MS≥4.0 from Artux to Pishan, earthquake window of Kuqa to Shaya, and seismicity rate; ② Geophysical observations: there are 2 geophysical anomalies include deformation and electromagnetism, while both anomalies are less related to these earthquakes; ③ The Zepu fault is the closest fault to the Pishan MS 5.1 and Yecheng MS 5.0 earthquakes, which is about 15 km and 3 km away from the two earthquakes, respectively, and the focal mechanism solution shows that both MS≥5.0 earthquakes are thrust earthquakes; ④ The sequence is a swarm, there are obvious foreshocks before the mainshock, and there are abundant aftershocks, and the sequence activity shows the characteristics of phased attenuation. Comprehensive analysis shows that the Pishan MS 5.1 and Yecheng MS 5.0 earthquakes in Sep. 2021 are composed of a swarm, and there are few geophysical anomalies observed before the earthquakes, and the seismic activity anomalies are mainly predicted by location.
2022,43(4): 160-174 收稿日期:2021-12-15
DOI:10.3969/j.issn.1003-3246.2022.04.020
基金项目:地震科技星火计划(项目编号:XH22011YA);中国地震台网中心青年科技基金(项目编号:QNJJ202104);2021年度震情跟踪定向工作任务(项目编号:2021020508);2022年度震情跟踪定向工作任务(项目编号:2022010127)
作者简介:马亚伟(1990—),男,硕士,工程师,从事地震预报研究工作。E-mail:yawei_m@seis.ac.cn
参考文献:
[1] 陈杰, 尹金辉, 曲国胜, 等. 塔里木盆地西缘西域组的底界、时代、成因与变形过程的初步研究. 地震地质, 2000, 22(Z): 104-116.
[2] 陈颙. 用震源机制一致性作为描述地震活动性的新参数[J]. 地球物理学报, 1978, 21(2): 146-159.
[3] 崔子健, 李志雄, 陈章立, 等. 判别小震群序列类型的新方法研究——谱振幅相关分析法[J]. 地球物理学报, 2012, 55(5): 1 718-1 724.
[4] 胡方秋. 新疆地震构造带及其特征[J]. 内陆地震, 1988, 3: 268-276.
[5] 蒋海昆. 典型断层组合及不同温压条件下岩石变形过程中的声发射活动特征[D]. 北京: 中国地震局地质研究所, 2000: 28-56.
[6] 蒋海昆, 代磊, 侯海峰. 余震序列性质判定单参数判据的统计研究[J]. 地震, 2006, 26(3): 17-25.
[7] 蒋海昆, 傅征祥, 刘杰, 等. 中国大陆地震序列研究[M]. 北京: 地震出版社, 2007.
[8] 蒋海昆, 周少辉. 前震: 预测意义及识别方法[J]. 地震地磁观测与研究, 2020, 41(5): 222-225.
[9] 姜祥华, 陈佳维, 解孟雨, 等. 基于统计学的地震显著平静阈值估计[J]. 地震地磁观测与研究, 2020, 41(2): 23-30.
[10] 李金, 王琼, 吴传勇, 等. 2015年7月3日皮山6.5级地震发震构造初步研究[J]. 地球物理学报, 2016, 59(8): 2 859-2 870.
[11] 李向东, 王克卓. 西昆仑山北缘盆山构造转换解析[J]. 新疆地质, 2002, (S1): 19-25.
[12] 刘军, 刘爱文, 孙甲宁, 等. 2015年7月3日新疆皮山MS 6.5地震震害特征分析[J]. 震灾防御技术, 2016, 11(3): 647-655.
[13] 陆远忠, 吕悦军, 郑月军. 短期预报中地震活动图像演化方法//地震短临预报的理论与方法[C]. 北京: 地震出版社, 1997, 13-21.
[14] 马亚伟, 宋治平, 杨文, 等. 2020年5月6日新疆乌恰5.0级和5月9日柯坪5.2级地震总结[J]. 地震地磁观测与研究, 2020, 41(4): 179-192.
[15] 梅世蓉, 薛艳, 宋治平. 华北地区强震前地震活动长期演变过程的共性//地震短临预报的理论与方法[C]. 北京: 地震出版社, 1997: 3-12.
[16] 倪四道, 王伟涛, 李丽. 2010年4月14日玉树地震: 一个有前震的破坏性地震[J]. 中国科学: 地球科学, 2010, 40(5): 535-537.
[17] 平建军, 张青荣, 曹肃朝, 等. 4级地震平静是华北地区强震前的一个重要震兆特征[J]. 地震学报, 2001, 23(4): 441-448.
[18] 孙其政, 国家地震局预测预防司. 测震学分析预报方法[M]. 北京: 地震出版社, 1997.
[19] 吴传勇, 李金, 刘建明, 等. 新疆皮山MS 6.5地震——发生在西昆仑山前的一次褶皱地震[J]. 地震地质, 2017, 39(2): 342-355.
[20] 薛艳, 刘杰, 余怀忠, 等. 2011年日本本州东海岸附近9.0级地震活动特征[J]. 科学通报, 2012, 57(8): 634-640.
[21] 杨文, 龙海云, 姚琪. 2015年7月3日新疆皮山MS 6.5地震序列活动性及重新定位研究[J]. 地震, 2017, 37(1): 166-174.
[22] 易桂喜, 韩渭滨. 四川及邻近区强震前地震活动频度的变化特征[J]. 地震研究, 2004, 27(1): 8-13.
[23] 苑争一, 宋治平, 姜祥华, 等. 2020年3月23日新疆拜城5.0级和7月13日霍城5.0级地震总结[J]. 地震地磁观测与研究, 2021, 42(2): 17-31.
[24] 赵石柱, 张敏, 王晓飞. 2015年7月3日新疆皮山MS 6.5地震序列震源机制解及发震构造分析[J]. 地震地磁观测与研究, 2019, 40(6): 15-21.
[25] 赵石柱, 陈向军, 张敏. 2015年新疆皮山MS 6.5地震序列震源深度测定[J]. 地震地磁观测与研究, 2017, 38(2): 31-37.
[26] 张玮, 漆家福, 雷刚林, 等. 塔西南坳陷西昆仑山前冲断带的收缩构造变形模式[J]. 新疆石油地质, 2010, 31(6): 567-571.
[27] Bolton D C, Shokouhi P, Rouet-Leduc B, et al. Characterizing acoustic signals and searching for precursors during the laboratory seismic cycle using unsupervised machine learning[J]. Seismological Research Letters, 2019, 90(3): 1 088-1 098.
[28] Cowgill E S. Tectonic evolution of the Altyn Tagh-western Kunlun fault system, northwestern China[C]//Dissertation Abstracts International. University of California, Los Angeles, 2001.
[29] Chen X W, Shearer P M. Analysis of foreshock sequences in California and implications for earthquake triggering[J]. Pure and Applied Geophysics, 2016, 173(1): 133-152.
[30] Goebel T H W, Schorlemmer D, Becker T W, et al. Acoustic emissions document stress changes over many seismic cycles in stick-slip experiments[J]. Geophysical Research Letters, 2013, 40(10): 2 049-2 054.
[31] Helmstetter A, Sornette D, Grasso J R. Mainshocks are aftershocks of conditional foreshocks: how do foreshock statistical properties emerge from aftershock laws[J]. Journal of Geophysical Research: Solid Earth, 2003a, 108(B10): 2 046.
[32] Helmstetter A, Sornette D. Foreshocks explained by cascades of triggered seismicity[J]. Journal of Geophysical Research: Solid Earth, 2003b, 108(B10): 2 457.
[33] Jones L M, Molnar P. Some characteristics of foreshocks and their possible relationship to earthquake prediction and premonitory slip on faults[J]. Journal of Geophysical Research: Solid Earth, 1979, 84(B7): 3 596-3 608.
[34] Kisslinger C. Aftershocks and fault-zone properties[J]. Advances in Geophysics, 1996, 38: 1-36.
[35] Marzocchi W, Sandri L. A review and new insights on the estimation of the b-value and its uncertainty[J]. Annals of Geophysics, 2003, 46(6): 1 271-1 282.
[36] Mignan A, Woessner J. Estimating the magnitude of completeness for earthquake catalogs[M/OL]. Swiss Seismological Service: ETH Zurich, 2012.
[37] Peng Z, Vidale J E, Ishii M, et al. Seismicity rate immediately before and after main shock rupture from high-frequency waveforms in Japan[J]. Journal of Geophysical Research: Solid Earth, 2007, 112: 1-15.
[38] Reasenberg P A. Foreshock occurrence before large earthquakes[J]. Journal of Geophysical Research: Solid Earth, 1999, 104(B3): 4 755-4 768.
[39] Sobel E R, Dumitru T A. Thrusting and exhumation around the margins of the western Tarim Basin during the India-Asia collision[J]. Journal of Geophysical Research: Solid Earth, 1997, 102(B3): 5 043-5 063.
[40] Trugman D T, Ross Z E. Pervasive foreshock activity across southern California[J]. Geophysical Research Letters, 2019, 46(15): 8 872-8 781.
[41] Yin A, Rumelhart E P, Butler R, et al. Tectonic history of the Altyn Tagh fault system in northern Tibet inferred from Cenozoic sedimentation. Geological Society of America Bulletin, 2002, 114(10): 1 257-1 295.
[42] Vidale J, Mori J, Houston H. Something wicked this way comes: clues from foreshocks and earthquake nucleation[J]. EOS: Earth & Space Science News, 2001, 82(6): 68.
[43] Wiemer S, Wyss M. Minimum magnitude of completeness in earthquake catalogs: examples from Alaska, the western United States, and Japan[J]. Bull Seismol Soc Am, 2000, 90(4): 859-869.
[44] Wyss M, Hasegawa A, Wiemer S, et al. Quantitative mapping of precursory seismic quiescence before the 1989, M 7.1 off-Sanriku earthquake, Japan[J]. Annali di Geofisica, 1999, 42(5): 851-869.
[45] Zheng H B, Powell C M, An Z S, et al. Pliocene uplift of the northern Tibetan plateau[J]. Geology, 2000, 28(8): 715-718.