2022年3月17日新疆皮山发生MS 5.2地震,时隔83天,于6月8日再次发生MS 5.0地震,2次地震相距约9 km。MS 5.2地震前10天,震区出现小震群活动,三十里营房地震台记录到671次前震活动,序列活动表现出震群型特征。利用CAP方法计算皮山MS 5.2、MS 5.0地震的震源机制解,显示2次地震破裂类型差异较大,其中MS 5.2地震为逆冲型,MS 5.0地震为正断兼走滑型。根据2022年皮山5级震群序列特征及2次主要地震事件破裂方式的差异,结合震中附近构造特征,探讨此次震群活动的构造复杂性,认为皮山震群发生在天神达坂断裂和康西瓦断裂之间的次级断裂上,推测在NS向构造应力作用下,康西瓦断裂南北两侧的左旋滑移量部分被西昆仑前缘的逆冲断裂系所吸收,由于构造方式的差异及应力分配的不均匀,其EW向运动速率在不同区段存在一定差异,在局部地区形成近EW向的差应力,进而产生一些拉张性质的破裂。
On March 17, 2022, a magnitude 5.2 earthquake occurred in Pishan, Xinjiang. After 83 days, another earthquake with magnitude 5.0 occurred in Pishan on June 8, 2022, these two earthquakes were about 9km apart. In addition, 10 days before the Pishan MS 5.2 earthquake, small earthquake swarm activity began to appear in the earthquake area. A total of 671 foreshock activities were recorded by a single station in SSL, and the sequence activity showed the characteristics of earthquake swarm type. The focal mechanism of the two M 5 earthquakes was calculated by the CAP method. The rupture type of the Pishan MS 5.2 earthquake was thrust type, and the focal mechanism of the Pishan M 5.0 earthquake was normal fault and strike slip type. The rupture types of the two earthquakes were quite different. According to the sequence characteristics of the Pishan M 5 earthquake swarm in 2022, the difference of the rupture modes of the two main earthquake events in the sequence, and the structural characteristics near the epicenter, the tectonic complexity of the earthquake swarm activity is discussed. It is considered that the Pishan earthquake swarm occurred on the secondary fault between Tianshen Daban fault and Kangxiwar fault. It is speculated that under the action of NS-trending tectonic stress, part of the left-lateral slip on the north and south sides of the Kangxiwa fault was absorbed by the thrust fault system at the front of West Kunlun. There is a certain difference in the east-west movement rate in different sections, and a near-EW-direction differential stress is formed in the local area, which in turn produces some tensile fractures.
2022,43(4): 175-185 收稿日期:2022-08-08
DOI:10.3969/j.issn.1003-3246.2022.04.021
基金项目:中国地震局地震科技星火计划(项目编号:XH21042);新疆地震科学基金(项目编号:202007);新疆维吾尔自治区重点研发课题(项目编号:2022B03001-1);新疆维吾尔自治区自然科学基金(项目编号:2020D01A83);新疆地震局科技创新团队计划(项目编号:XJDZCXTD2020-3)
作者简介:李金(1986—),男,高级工程师,主要从事数字地震学及地震预测研究工作。E-mail:lijin6205@163.com
参考文献:
[1] 付碧宏, 张松林, 谢小平, 等. 阿尔金断裂系西段: 康西瓦断裂的晚第四纪构造地貌特征研究[J]. 第四纪研究, 2006, 26(2): 228–235.
[2] 高锐, 黄东定, 卢德源, 等. 横过西昆仑造山带与塔里木盆地结合带的深地震反射剖面[J]. 科学通报, 2000, 45(17): 1 874–1 879.
[3] 郭志, 高星, 路珍. 2020年1月19日新疆伽师M 6.4地震的重定位及震源机制[J]. 地震地质, 2021, 43(2): 345–356.
[4] 韩立波, 蒋长胜, 包丰. 2010年河南太康MS 4.6地震序列震源参数的精确确定[J]. 地球物理学报, 2012, 55(9): 2 973–2 981.
[5] 李海兵, Valli F, 许志琴, 等. 喀喇昆仑断裂的变形特征及构造演化[J]. 中国地质, 2006, 33(2): 239–255.
[6] 李海兵, Van der Woerd J, 孙知明, 等. 阿尔金断裂带康西瓦段晚第四纪以来的左旋滑移速率及其大地震复发周期的探讨[J]. 第四纪研究, 2003, 28(2): 197–213.
[7] 李金, 蒋海昆, 魏芸芸, 等. 2020年1月19日伽师6.4级地震发震构造的初步研究[J]. 地震地质, 2021, 43(2): 357–376.
[8] 李金, 王琼, 吴传勇, 等. 2015年7月3日皮山6.5级地震发震构造初步研究[J]. 地球物理学报, 2016, 59(8): 2 859–2 870.
[9] 李艳永, 王范霞, 乌尼尔, 等. 西昆仑东段震源机制和构造应力场特征[J]. 震灾防御技术, 2020, 15(4): 802–810.
[10] 罗艳, 赵里, 曾祥方, 等. 芦山地震序列震源机制及其构造应力场空间变化[J]. 中国科学: 地球科学, 2015, 45(4): 538–550.
[11] 祁玉萍, 张致伟, 龙锋, 等. 大凉山次级块体及邻区震源机制解与区域应力场特征分析[J]. 地震地质, 2018, 40(2): 377–395. doi: 10.3969/j.issn.0253-4967.2018.02.007.
[12] 许绍燮, 王碧泉, 章光月, 等. 海城地震前震序列与震群-兼论前震序列在地震预报中的一种功能[J]. 地震学报, 1981, 3(1): 3–12.
[13] 易桂喜, 付虹, 王思维, 等. 1988年澜沧—耿马地震前震源区应力状态分析[J]. 地震研究, 2014, 37(3): 332–338.
[14] 易桂喜, 龙锋, 梁明剑, 等. 2017年8月8日九寨沟M 7.0地震及余震震源机制解与发震构造分析[J]. 地球物理学报, 2017, 60(10): 4 083–4 097.
[15] 易桂喜, 龙锋, 梁明剑, 等. 2019年6月17日四川长宁MS 6.0地震序列震源机制解与发震构造分析[J]. 地球物理学报, 2019, 62(9): 3 432–3 447.
[16] 殷秀华, 史志宏, 刘占坡. 中国岩石圈地球动力学地图集[M]. 北京: 地图出版社, 1989.
[17] 张广伟, 雷建设, 梁姗姗, 等. 2014年8月3日云南鲁甸MS 6.5级地震序列重定位与震源机制研究[J]. 地球物理学报, 2014, 57(9): 3 018–3 027.
[18] 张勇, 陈运泰, 许力生, 等. 2014年云南鲁甸MW 6.1地震: 一次共轭破裂地震[J]. 地球物理学报, 2015, 58(1): 153–162.
[19] Burtman V S, Molnar P. Geological and geophysical evidence for deep subduction of continental crust beneath the Pamir[J]. Geological Society of America Special Papers, 1993, 281: 1–76.
[20] Mogi K. Some discussions on aftershocks, foreshocks and earthquake swarms-the fracture of a semi-infinite body caused by inner stress origin and its relation to the earthquake phenomena (3)[J]. Bull Earthquake Res Inst Univ Tokyo, 1963, 41: 615–658.
[21] Peltzer G, Tapponnier P, Armijo R. Magnitude of late Quaternary left-lateral displacements along the north edge of Tibet[J]. Science, 1989, 246(4 935): 1 285–1 289.
[22] Robinson A C, Yin A, Manning C E, et al. Cenozoic evolution of the eastern Pamir: Implications for strain accommodation mechanisms at the western end of the Himalayan-Tibetan orogeny[J]. Bulletin of the Geological Society of America, 2007, 119(7/8): 882–896.
[23] Strecker M R, Frisch W, Hamburger M W, et al. Quaternary deformation in the eastern Pamirs, Tadzhikistan and Kyrgyzstan[J]. Tectonics, 1995, 14(5): 1 061–1 079.
[24] Tan Y, Zhu L P, Helmberger D V, et al. Locating and modeling regional earthquakes with two stations[J]. Journal of Geophysical Research: Solid Earth, 2006, 111: B01306-B01321.
[25] Tapponnier P, Molnar P. Active faulting and tectonics in China[J]. Journal of Geophysical Research, 1977, 82(20): 2 905–2 930.
[26] Wright T J, Parsons B, England P C, et al. InSAR observations of low slip rates on the major faults of western Tibet[J]. Science, 2004, 305(5 681): 236–239.
[27] Yu W X, Chou R Q, Hou X Y, et al. Seismogrnic mechanism of Lancang and Gengma earthquake[J]. Acta Seismologica Sinica, 1994, 7(2): 209–216.
[28] Zhao L S, Helmberger D V. Source estimation from broadband regional seismograms[J]. Bull Seismol Soc Am, 1994, 84(1): 91–104.