2022年9月5日四川省甘孜州泸定县发生MW 6.6地震,利用国家烈度速报与预警工程项目建成的基本站强震动数据,使用迭代反褶积和叠加法(IDS)进行破裂过程反演。反演所得破裂模型显示,破裂面呈NNW—SSE走向,破裂持续时间为15 s,分为4个阶段:首个阶段发生在震后3 s,破裂朝着断层面上倾方向以及SE侧传播;第二阶段为震后6—9 s,破裂继续向SE侧传播并在震中SE侧10 km处迅速加剧,此时破裂滑动速率达到峰值;第三阶段在震后9—12 s,破裂能量继续在SE侧释放,破裂滑动速率逐渐减小,破裂静态滑动累积量达到峰值并趋于稳定;第四阶段在震后12—15 s,破裂能量基本释放完毕,破裂结束。整个破裂由震中向SE方向延伸,由深部向浅部扩展。最大破裂点位于震中SE向10 km附近地下5 km处,最大滑动量为0.8 m,破裂可能出露地表。
On September 5, 2022, an MW 6.6 earthquake occurred in Luding County, Ganzi Prefecture, Sichuan Province. We used the strong motion data of the basic stations built by the National System for Fast Seismic Intensity Report and Earthquake Early Warning Project to carry out an inversion for the rupture process using the iterative deconvolution and stacking method (IDS). The inverted rupture model shows that the rupture plane is in an NNW-SSE trend and the rupture duration is 15 s, which is divided into four stages. The first stage occurred 3 s after the earthquake, and the rupture propagated towards the up-dipping direction of the fault plane and the southeast side. The second stage is 6 to 9 s after the earthquake. The rupture continued to propagate to the southeast and intensified rapidly at 10 km to the southeast of the epicenter. At this time, the rupture slip rate reached its peak. In the third stage, 9 to 12 s after the earthquake, the rupture energy continued to release in the southeast, the rupture slip rate gradually decreased, and the accumulated amount of rupture static slip reached the peak and became stable. In the fourth stage, 12 to 15 s after the earthquake, the rupture energy is basically released and the rupture is over. The whole rupture extends from the epicenter to the southeast and from deep to shallow. The maximum rupture point is located 10 km southeast of the epicenter and 5 km underground. The maximum sliding amount is 0.8 m. The rupture may be exposed to the surface.
2022,43(5): 186-192 收稿日期:2022-09-28
DOI:10.3969/j.issn.1003-3246.2022.05.023
基金项目:中国地震局地震应急青年重点任务(项目编号:CEA_EDEM-2022)
作者简介:戴丹青(1990-),男,工程师,主要从事地震预警运维和震源破裂过程研究工作。E-mail:daidanqing@seis.ac.cn
*通讯作者:孙丽(1983-),女,高级工程师,主要从事地震速报预警方法研究与台网管理工作。E-mail:sunli@seis.ac.cn
参考文献:
陈桂华,徐锡伟,闻学泽,等.川滇块体北-东边界活动构造带运动学转换与变形分解作用[J].地震地质,2008,30(1):58-85.
戴丹青,杨志高,孙丽. 2022年1月8日青海门源MS 6.9地震破裂过程[J]. 地震学报,2022,待刊.
蒋锋云,朱良玉,王双绪,等.川滇地区地壳块体运动特征研究[J].地震研究,2013,36(3):263-268.
李大虎,丁志峰,吴萍萍,等.鲜水河断裂南东段的深部孕震环境与2014年康定MS 6.3地震[J].地球物理学报,2015,58(6):1 941-1 953. doi:10.6038/cjg20150610.
梁明剑,陈立春,冉勇,等.鲜水河断裂带雅拉河段晚第四纪活动性[J].地震地质,2020,42(2):513-525.
秦博,章文波. 利用强震记录反演2008汶川8.0地震震源破裂过程[C]//《中国地球物理2010——中国地球物理学会第二十六届年会、中国地震学会第十三次学术大会论文集》,2010,29:289.
唐红涛,孙兴华,保长燕,等. 近年来龙门山断裂带GPS剖面形变与应变积累分析[J].地震研究,2014,37(3):6.
铁永波,张宪政,卢佳燕,等.四川省泸定县MS 6.8级地震地质灾害发育规律与减灾对策[J/OL].水文地质工程地质,2022,https://kns.cnki.net/kcms/detail/11.2202.P.20220915.1836.002.html.
王天韵.基于近场强震资料的汶川地震破裂过程反演[D]. 哈尔滨:中国地震局工程力学研究所,2012.
熊探宇,姚鑫,张永双.鲜水河断裂带全新世活动性研究进展综述[J].地质力学学报,2010,16(2):176-188.
徐锡伟,闻学泽,郑荣章,等.川滇地区活动块体最新构造变动样式及其动力来源[J].中国科学(D辑),2003,33(S1):151-162.
徐锡伟,张培震,闻学泽,等.川西及其邻近地区活动构造基本特征与强震复发模型[J].地震地质,2005,27(3):446-461.
尹福光,潘桂棠,孙志明.西南三江构造体系及演化、成因[J].沉积与特提斯地质,2021,41(2):265-282.
张立成,薄万举. 鲜水河断裂带位移协调比异常与四川地震活动[J].地震地磁观测与研究,2021,42(2):139-140.
张勇.震源破裂过程反演方法研究[D].北京:北京大学地球物理系,2008.
张岳桥,陈问,杨农.川西鲜水河断裂带新生代剪切变形40Ar/39Ar测年及其构造意义[J].中国科学(D辑),2004,34(7):613-621.
张培震.青藏高原东缘川西地区的现今构造变形、应变分配与深部动力过程[J].中国科学(D辑),2008,38(9):1 041-1 056
郑绪君,张勇,汪荣江.采用IDS方法反演强震数据确定2017年8月8日九寨沟地震的破裂过程[J].地球物理学报,2017,60(11):4 421-4 430. doi:10.6038/cjg20171128.
郑绪君,张勇,马强,等.基于强震动资料的破裂过程快速反演及其自动化的可行性[J].地球物理学报,2018,61(10):4 021-4 036. doi:10.6038/cjg2018M0029.
Ji C, Archuleta R J and Twardzik C. Rupture history of 2014 MW 6.0 South Napa earthquake inferred from near-fault strong motion data and its impact to the practice of ground strong motion prediction[J]. Geophysical Research Letters, 2015, 42(7):2 149-2 156.
Laske G, Masters G, Ma Z, etal. Update on CURST1.0-A1-degree global model of Earth's crust[J]. Geophysical Research Abstracts, 2013, 15:EGU 2 013-2 658.
SunLi, ZhangMiao,Wen Lianxing. A new method for high-resolution event relocation and application to the aftershocks of Lushan Earthquake, China[J]. Journal of Geophysical Research:Solid Earth, 2016, 121(4):2 539-2 559.
Wang R J, Heimann S, Zhang Y, et al. Complete synthetic seismograms based on a spherical self-gravitating Earth model with an atmosphere-ocean-mantle-core structure[J]. Geophysical Journal International, 2017a, 210(3):1 739-1 764.
Zhang Y, Wang R J, Zschau J, et al. Automatic imaging of earthquake rupture processes by iterative deconvolution and stacking of high rate GPS and strong motion seismograms[J].Journal of Geophysical Research:Solid Earth, 2014, 119(7):5 633-5 650.doi:10.1002/2013JB010469.
Zhang Y, Wang R J, Chen Y T. Stability of rapid finite-fault inversion for the 2014 MW 6.1 South Napa earthquake[J]. Geophysical Research Letters, 2015c, 42(23):10 263-10 272.