2022年1月8日青海门源县发生MS 6.9地震,利用谐波分析方法和大地电场优势方位角方法,对震中300 km范围内地电场台站的观测资料进行分析,并结合构造物理学相关结论以及2016年门源MS 6.4地震进行相关解释和对比分析,结果发现:①震前半年左右,地电场开始出现振幅异常增大现象,但不同台站的异常表现形式亦有所不同;②距离震中越近的地电场台站越容易观测到异常现象,主要表现为优势方位角出现方位偏转、突跳范围增大或收窄等异常现象,可能与台站下方岩体裂隙结构发生变化有一定关联;③通过与2016年门源MS 6.4地震的异常结果对比,发现2次地震优势方位角的异常形态有较大不同,分析认为可能与2次地震震中位置的地质构造,震源机制以及发震断层的属性有一定关系。
On January 8, 2022, an MS 6.9 earthquake occurred in Menyuan County, Qinghai Province. In this paper, theobservation data of geoelectric field stationswithin 300 km of the epicenterare analyzed by using the method of harmonic analysis and the dominant azimuth of geoelectric field. And combined with the relevant conclusions of tectonophysics and the Menyuan MS 6.4 earthquake in 2016, the related interpretation and comparative analysis are carried out. The conclusions are as follows:①About half a year before the earthquake, the abnormal amplitude of the geoelectric field began to increase, but the abnormal manifestations were also different in different stations;②The closer the geoelectric field station is to the epicenter, the easier it is to observe abnormal phenomena,which aremainly manifested as the deflection of the dominant azimuth, increase or narrowing of the sudden jump range. These phenomena may be related to the changes in the structure of rock fracture structureunder thestations;③Compared with the abnormalresults of the Menyuan MS 6.4 earthquake in 2016, we found that the abnormal shape of the dominant azimuth of the two earthquakes isquite different. It may be related to the geological structure, the focalmechanism and the properties of the seismogenic faults of the two earthquakes.
2022,43(6): 30-40 收稿日期:2022-03-21
DOI:10.3969/j.issn.1003-3246.2022.06.005
基金项目:甘肃省科技计划(项目编号:20JR10RA498,21JR7RA791);中国地震局地震预测研究所基本科研业务费专项(项目编号:2021IESLZ07)
作者简介:付阿龙(1998-),男,主要从事地震电磁学研究。E-mial:2544550588@qq.com
*通讯作者:安张辉(1978-),男,副研究员,主要从事地震电磁学与全国地电台网技术管理工作E-mia:anzhanghui5@gsdzj.gov.cn
参考文献:
艾萨·伊斯马伊力,陈界宏,毛志强. 2016-2017年北天山地区两次6级地震前地电场异常[J]. 电波科学学报,2020,35(3):430-436.
艾萨·伊斯马伊力,陈界宏,次旦,等. 和田台地电场岩体裂隙优势方位角变化特征分析[J]. 内陆地震,2021,35(3):245-252.
安张辉,杜学彬,范莹莹,等. 汶川MS 8.0级大震前天基与陆基电场资料联合应用研究[J]. 地球物理学报,2011,54(11):
2 876-2 884.
安张辉,杜学彬,范莹莹,等. 2013年芦山MS 7.0地震前地电场变化特征研究[J]. 地震,2015,35(1):91-99.
陈颙,黄庭芳,刘恩儒.岩石物理学[M].合肥:中国科学技术大学出版社,2009:6-131.
董颂声,陆学振,冯志生,等. 希腊VAN地震预报方法的进展与争论(Ⅱ)——国际评价与争论[J]. 国际地震动态,1999,(1):13-22.
范莹莹,杜学彬,Zlotnicki J,等. 汶川MS 8.0大震前的电磁现象[J]. 地球物理学报,2010,53(12):2 887-2 898.
冯志生,董颂声,王建宇,等. 希腊VAN地震预报方法的进展与争论(Ⅰ)-进展[J]. 国际地震动态,1998, (12):12-18.
傅承义,陈运泰,祁贵仲. 地球物理学基础[M]. 北京:科学出版社,1985.
郝建国,潘怀文,毛国敏,等. 准静电场异常与地震——一种可靠短临地震前兆信息探索[J]. 地震地磁观测与研究,2000,21(4):3-7.
侯泽宇,安张辉,范莹莹,等. 云南漾濞县6.4级地震前地电场异常回溯性分析[J]. 地震工程学报,2021,43(4):807-817.
胡朝忠,杨攀新,李智敏,等. 2016年1月21日青海门源6.4级地震的发震机制探讨[J]. 地球物理学报,2016,59(5):
1 637-1 646.
黄清华,刘涛. 新岛台地电场的潮汐响应与地震[J]. 地球物理学报,2006,49(6):1 745-1 754.
黄清华,林玉峰. 地震电信号选择性数值模拟及可能影响因素[J]. 地球物理学报,2010,53(3):535-543.
李振洪,韩炳权,刘振江,等. InSAR数据约束下2016年和2022年青海门源地震震源参数及其滑动分布[J]. 武汉大学学报(信息科学版),2022,47(6):887-897.
梁姗姗,雷建设,徐志国,等. 2016年1月21日青海门源MS 6.4余震序列重定位和主震震源机制解[J]. 地球物理学报,2017,60(6):2 091-2 103.
刘长生,张思萌,杨维辉,等. 黑龙江地电场方位角异常与中强地震的关系探讨[J]. 防灾减灾学报,2020,36(2):33-39.
刘洋,许才军,温扬茂. 门源MW 5.9级地震形变InSAR观测及区域断裂带深部几何形态[J]. 武汉大学学报(信息科学版),2019,44(7):1 035-1 042.
马钦忠,冯志生,宋治平,等. 崇明与南京台震前地电场变化异常分析[J]. 地震学报,2004,26(3):304-312.
毛桐恩,席继楼,王燕琼,等. 地震过程中的大地电场变化特征[J]. 地球物理学报,1999,42(4):520-528.
潘家伟,李海兵,Chevalier M L,等. 2022年青海门源MS 6.9地震地表破裂带及发震构造研究[J]. 地质学报,2022,96(1):215-231.
孙正江,王华俊. 地电概论[M]. 北京:地震出版社,1984:23-28.
谭大诚,赵家骝,席继楼,等. 潮汐地电场特征及机理研究[J]. 地球物理学报,2010,53(3):544-555.
谭大诚,席继楼,张慧,等. 地电场水文地质因素及裂隙水主体渗流方向逐日计算[J]. 地震学报,2013,35(1):36-49.
谭大诚,赵家骝,刘小凤,等. 自然电场的区域性变化特征[J]. 地球物理学报,2014,57(5):1 588-1 598.
谭大诚,辛建村,王建军,等. 大地电场岩体裂隙模型的应用基础与震例解析[J]. 地球物理学报,2019,62(2):558-571.
王铭浩,何骁慧,王烁帆. 2016年1月21日青海门源MS 6.4地震破裂方向性研究[J]. 地球物理学进展,2021,36(1):67-77.
王宇. 地电场优势方位角变化特征及地震预测研究[D]. 兰州:中国地震局兰州地震研究所,2021.
王宇,谭大诚,邱大琼,等. 2020年新疆于田MS 6.4地震和田台地电场异常的测道差异性[J]. 地震,2021,41(2):180-189.
辛建村,张晨蕾. 漾濞县MS 6.4、玛多县MS 7.4地震前地电场变化分析[J]. 地震工程学报,2021,43(4):818-825.
张志宏,李梦莹,焦明若,等. 基于大地电场岩体裂隙水渗流模型的地震前兆异常特征研究[J]. 大地测量与地球动力学,2021,41(9):979-984.
赵玉林,卢军,张洪魁,等. 电测量在中国地震预报中的应用[J]. 地震地质,2001,23(2):277-285.
中国地震局监测预报司. 地震电磁学理论基础与观测技术[M]. 北京:地震出版社,2010.
Dologlou E. A three year continuous sample of officially documented predictions issued in Greece using the van method:1987-1989[J]. Tectonophysics, 1993, 224(1/3):189-202.
EftaxiasK, KapirisP, PolygiannakisJ, et al. Signature of pending earthquake from electromagnetic anomalies[J]. Geophysical Research Letters, 2001, 28(17):3 321-3 324.
Hou Z Y, An Z H, Fan Y Y, et al. Investigation on the statistical characteristics of geoelectric field seismic anomalies in the North-South seismic belt of Chinese mainland[J]. Acta Geophysica,2021, 69(6):2 085-2 097.
Huang Q H. Controlled analogue experiments on propagation of seismic electromagnetic signals[J]. Chinese Science Bulletin, 2005, 50(17):1 956-1 961.
Ifantis A, Giannakopoulos K. New experimental data reveal possible relation of chaotic behavior of the long-term geoelectric potential difference to seismic activity in Western Greece[J]. Chaos, Solitons & Fractals, 2007, 34(3):717-726.
Nur A. Dilatancy, pore fluids, and premonitory variations of ts/tp travel times[J]. Bulletin of the Seismological Society of America, 1972, 62(5):1 217-1 222.
Orihara Y, Kamogawa M, Nagao T, et al. Independent component analysis of geoelectric field data in the northern Nagano, Japan[J]. Proceedings of the Japan Academy, Series B, 2009, 85(9):435-442.
Ren H X, Wen J, Huang Q H, et al. Electrokinetic effect combined with surface-charge assumption:a possible generation mechanism of coseismic EM signals[J]. Geophysical Journal International, 2015, 200(2):837-850.
Scholz C H, Sykes L R, Aggarwal Y P. Earthquake prediction:a physical basis[J]. Science, 1973, 181(4 102):803-810.
Sobolev G A. Application of electric method to the tentative short-term forecast of Kamchatka earthquakes[J]. Pure and Applied Geophysics, 1975, 113(1):229-235.
Telesca L, Colangelo G, Hattori K, et al. Principal component analysis of geoelectrical signals measured in the seismically active area of Basilicata Region (southern Italy)[J]. Natural Hazards and Earth System Sciences, 2004, 4(5/6):663-667.
UyedaS, Nagao T, Orihara Y, et al. Geoelectric potential changes:possible precursors to earthquakes in Japan[J]. Proceedings of the National Academy of Sciences of the United States of America, 2000, 97(9):4 561-4 566.
Uyeda S, Nagao T, Hattori K, et al. Geophysical Observatory in Kamchatka region for monitoring of phenomena connected with seismic activity[J]. Natural Hazards and Earth System Sciences, 2001, 1(1/2):3-7.
Uyeda S, Hayakawa M, Nagao T, et al. Electric and magnetic phenomena observed before the volcano-seismic activity in 2000 in the Izu Island Region, Japan[J]. Proceedings of the National Academy of Sciences of the United States of America,2002, 99(11):7 352-7 355.
Varotsos P A, Alexopoulos K. Physical properties of the variations of the electric field of the earth preceding earthquakes, I[J]. Tectonophysics, 1984a, 110(1/2):73-98.
Varotsos P A, Alexopoulos K. Physical properties of the variations of the electric field of the earth preceding earthquakes. II. determination of epicenter and magnitude[J]. Tectonophysics, 1984b, 110(1/2):99-125.
Varotsos P A, Alexopoulos K, Nomicos K, et al. Official earthquake prediction procedure in Greece[J]. Tectonophysics, 1988, 152(3/4):193-196.
Varotsos P A, Sarlis N V, Lazaridou M, et al. Transmission of stress induced electric signals in dielectric media[J]. Journal of Applied Physics, 1998, 83(1):60-70.
Varotsos P A, Sarlis N V, Skordas E S. Long-range correlations in the electric signals that precede rupture:further investigations[J]. Physical Review E, 2003, 67(2):021109.
Varotsos P A, Sarlis N, Skordas E, et al. Additional evidence on some relationship between Seismic Electric Signals (SES) and earthquake focal mechanism[J]. Tectonophysics, 2006, 412(3/4):279-288.
Wang H, Liu-Zeng J, Ng HM, et al. Sentinel-1 observations of the 2016 Menyuan earthquake:a buried reverse event linked to the left-lateral Haiyuan fault[J]. International Journal of Applied Earth Observation and Geoinformation, 2017, 61:14-21.