当地时间2022年1月15日汤加Hunga Tonga-HungaHa’apai火山发生剧烈喷发,引发了MS 5.8地震和海啸。为了研究汤加火山喷发对全球范围内台站背景噪声的影响,在全球范围内选取2022年1月1—20日震中距0°—150°的14个宽频带地震台站进行功率谱密度分析、0°—60°的7个地震台站进行极化分析。通过分析各地震台站噪声功率谱密度及极化分析结果后发现:虽然此次汤加火山喷发引起了全球范围的海啸波,但是除了震中距120°范围内地震台站10—30 s周期的PSD值在火山地震发生后有明显变化外,其他地震台站不同周期的PSD值变化与汤加火山喷发均无相关性。汤加火山喷发没有改变1—30 s周期的背景噪声源区,各台站的背景噪声来源方向较稳定,但不同频段的背景噪声来源有一定的差异性。
The Hunga Tonga-HungaHa'apai(HTHH) volcano erupted on January 15, 2022, triggering a MS 5.8 earthquake and tsunami. This study aimed to investigate the impact of the HTHH volcanic eruption on seismic noise variation at stations worldwide. Fourteen broadband seismic stations with epicentral distance of 0 °-150 ° were selected for power spectral density (PSD) analysis, and seven stations with epicentral distance of 60 °were selected for polarization analysis. The noise PSD variation at each seismic station and polarization analysis results were analyzed. Results indicated that, although the HTHH volcanic eruption caused global tsunami waves, there was no correlation between the PSD of seismic stations in different periods with HTHH volcanic eruption, except for the PSD of seismic stations within 120 ° from the epicenter during 10-30 s period, which changed significantly after the volcanic earthquake occurred. The HTHH volcanic eruption did not change the seismic noise source region of 1-30 s, and the seismic noise source direction of each station was relatively stable, although different frequency bands exhibited some variations.
2023,44(1): 74-82 收稿日期:2022-10-08
DOI:10.3969/j.issn.1003-3246.2023.01.010
基金项目:上海佘山地球物理国家野外科学观测研究站研究室课题(项目编号:2022SSY04)
作者简介:孙冬军(1989-),男,工程师,主要从事地震资料处理研究工作。E-mail:sundongjunvip@163.com
参考文献:
方益志,薛梅. 大西洋中北部双频微地动特征[J]. 地震学报,2021,43(2):204-214.
孙冬军,刘芳,于海英,等. 新冠肺炎疫情对佘山与大洋山地震台背景噪声的影响[J]. 地震地磁观测与研究,2021,42(4):101-109.
肖晗. 中国南部以及南海区域微地震的观测与模拟[D]. 上海:同济大学,2018.
Adam D. Tonga volcano created puzzling atmospheric ripple[J]. Nature, 2022, 602 (7 894):497, doi:10.1038/d41586-022-00127-1.
Amores A, Monserrat S, Marcos M, et al. Numerical simulation of atmospheric Lamb waves generated by the 2022 Hunga-Tonga volcanic eruption[J]. Geophysical Research Letters, 2022, 49(6):e2022GL098240.
Casey R, Templeton M E, Sharer G, et al. Assuring the quality of IRIS data with MUSTANG[J].Seismological Research Letters, 2018, 89(2A):630-639,doi:10.1785/0220170191.
Chang J P, de Ridder S A L, Biondi B L. High-frequency Rayleigh-wave tomography using traffic noise from Long Beach, California[J]. Geophysics, 2016, 81(2):B43-B53.
David A Yuen, Melissa A Scruggs, Frank J Spera, et al, Under the surface:Pressure-induced planetary-scale waves, volcanic lightning, and gaseous clouds caused by the submarine eruption of Hunga Tonga-HungaHa'apai volcano[J], Earthquake Research Advances, Volume 2, Issue 3, 2022, 100134, ISSN 2772-4670, https://doi.org/10.1016/j.eqrea.2022.100134.
Global Volcanism Program. Report on Hunga Tonga-HungaHa'apai (Tonga)[M]//SennertS K. Weekly Volcanic Activity Report, 2 February-8 February 2022. Smithsonian Institution and US Geological Survey, 2021.
Green D N, Bastow I D, Dashwood B, et al. Characterizing broadband seismic noise in Central London[J]. Seismological Research Letters, 2017, 88(1):113-124.
Hasselmann K. A statistical analysis of the generation of microseisms[J]. Rev Geophys, 1963,1(2):177-210.
Kataoka R, Winn S D, Touber E. Meteotsunamis in Japan associated with the Tonga eruption in January 2022[J]. SOLA, 2022, 18:116-121.
Kedar S, Longuet-Higgins M, Webb F, et al. The origin of deep ocean microseisms in the North Atlantic Ocean[J]. Proceedings of the Royal Society A:Mathematical, Physical and Engineering Sciences,2008,464(2091):777-793.
Koper K D, Hawley V L. Frequency dependent polarization analysis of ambient seismic noise recorded at a broadband seismometer in the central United States[J]. Earthquake Science, 2010, 23(5):439-447.
Longuet-Higgins M S. A theory of the origin of microseisms[J]. Philosophical Transactions of the Royal Society of London. Series A, MathematicalandPhysicalSciences, 1950, 243(857):1-35.
Lü Y, NiS D, Xie J, et al. Crustal S-wave velocity structure of the Yellowstone region using a seismic ambient noise method[J]. Earthquake Science, 2013, 26(5):283-291, doi:10.1007/s11589-013-0016-1.
McNamara D E, Buland R P. Ambient noise levels in the continental United States[J].Bull Seismol Soc Am, 2004, 94(4):1 517-1 527.
Riahi N,Gerstoft P. The seismic traffic footprint:Tracking trains, aircraft, and cars seismically[J]. Geophys Res Lett, 2015, 42(8):2 674-2 681, doi:10.1002/2015GL063558.
Samson J C. Pure states, polarized waves, and principal components in the spectra of multiple, geophysical time-series[J]. Geophys J R Astr Soc, 1983, 72(3):647-664.
Shapiro N M, Campillo M, Stehly L, et al. High-resolution surface-wave tomography from ambient seismic noise[J]. Science, 2005, 307(5 715):1 615-1 618, doi:10.1126/science.1108339.
Xiao H, Xue M, Pan M H, et al. Characteristics of microseisms in South China[J]. Bull Seismol Soc Am, 2018, 108(5A):2 713-2 723.
Yao H J, van der Hilst R D, Montagner J P. Heterogeneity and anisotropy of the lithosphere of SE Tibet from surface wave array analysis[J]. J Geophys Res, 2010, 115(B12):B12307, doi:10.1029/2009JB007142.
Zhang J, Gerstoft P, Bromirski P D. Pelagic and coastal sources of P-wave microseisms:Generation under tropical cyclones[J]. Geophys Res Lett, 2010, 37(15):L15301, doi:10.1029/2010GL044288.
Zheng Y, Shen W S, Zhou L Q, etal. Crust and uppermost mantle beneath the North China Craton, northeastern China, and the Sea of Japan from ambient noise tomography[J]. J Gephys Res, 2011, 116 (B12):B12312, doi:10.1029/2011JB008637.
Zobin V M. Focal mechanism of volcanic earthquakes[J]. Bulletin Volcanologique, 1972, 36(4):561-571.