应用水物理、水化学方法综合分析固原东山坡井的地下水类型及水化学特征,揭示其地下水运移和补给来源,以期为有效识别宁夏南部的地震前兆异常和干扰排除发挥积极作用。分析结果表明:①利用卷积回归法和频谱分析法综合判定东山坡井的地下水类型为承压水;②东山坡井及井周围水体的水化学类型分别为NaHCO3型、CaHCO3型;③δD、δ18O测值分别为-82.51‰—-68.905‰、-11.83‰—-10.33‰,分布于大气降水线上方,说明东山坡井水体主要源于大气降水,补给高程为1.4—1.9 km,补给区平均温度为5.1℃;④东山坡井水体为东西两侧山体补给,地势更低的东北方向为其排泄方向。
In this paper, we present a comprehensive analysis of the groundwater types and hydrochemical characteristics of Dongshanpo well in Guyuan using hydrophysics and hydrochemistry methods.By revealing the sources of groundwater migration and recharge, our study will contribute to effectively identifying seismic anomalies and removing disturbances in southern Ningxia. Out analysis reveals several key findings:(1) The groundwater type of Dongshanpo well is confined water comprehensively determined by convolution regression method and spectrum analysis method; (2) The hydrochemical types of Dongshanpo well and surrounding water were NaHCO3 type and CaHCO3 type, respectively; (3) The values of δD and δ18O ranged from -82.51‰ to -68.905‰ and -11.83‰ to -10.33‰, respectively, which were distributed above the precipitation line, indicating that the Dongshanpo well was mainly recharged by precipitation. The recharge elevation ranged from 1.4 to 1.9 km, and the average temperature in the recharge area was 5.1℃. (4) The supply of the Dongshanpo well is the mountains around the east and west sides, while the northeast direction of the lower terrain is the discharge direction.
2023,44(1): 92-100 收稿日期:2022-11-01
DOI:10.3969/j.issn.1003-3246.2023.01.012
基金项目:宁夏自然科学基金项目(项目编号:2021AAC03485)
作者简介:李自芮(1983-),女,高级工程师,主要从事地下流体地球化学研究。E-mail:lzr1006@163.com
参考文献:
车用太,鱼金子.地震地下流体学[M].北京:气象出版社,2006:228-298.
崔天怀,魏晓妹.频谱分析法在地下水动态预报中的应用[J].地下水,1990,(4):201-205.
丁风和,范雪芳,戴勇,等.井-含水层系统地下水类型定量分析和判别[J].地震学报,2017,39(1):78-84.
付虹,邬成栋,赵小艳,等.云南开远井水位异常分析[J].地震学报,2014,36(2):292-298.
高彦芳,李红春,沈立成,等.重庆金佛山泉水地球化学特征及其空间分布意义[J].中国地质,2008,35(2):322-330.
郭晓东,赵海卿.珲春盆地地下水水化学特征分析[J].中国地质,2014,41(3):1 010-1 017.
胡小静,付虹,李利波,等.云南江川渔村井地下水补给来源分析[J].地震研究,2018,41(4):544-550.
黄天明,聂中青,袁利娟.西部降水氢氧稳定同位素温度及地理效应[J].干旱区资源与环境,2008,22(8):76-81.
李平,卢文喜,杨忠平.频谱分析法在吉林西部地下水动态预报中的应用[J].水文地质工程地质,2005,32(4):70-73.
林耀庭,唐庆,熊淑君,等. 四川盆地卤水的氢、氧同位素地球化学特征及其成因分类研究[J]. 地质地球化学,1997,(4):20-26.
刘汉彬,李军杰,金贵善,等. Helix SFT型惰性气体质谱测定氦同位素组成[J]. 矿物学报,2011,31(Z1):1 013.
刘耀炜.我国地震地下流体科学40年探索历程回顾[J].中国地震,2006,22(3):222-235.
王洁青,周训,李晓露,等. 云南兰坪盆地羊吃蜜温泉水化学特征与成因分析[J]. 现代地质,2017,31(4):822-831.
尹战军,丁风和,查斯,等.内蒙古三号地井水位频谱与含水层参数特征分析[J].防灾减灾学报,2019,35(2):15-19.
于津生. 中国同位素地球化学研究[M]. 北京:科学出版社,1997.
Brezonik P L, Arnold W A. Water chemistry:Fifty years of change and progress[J]. Environmental Science and Technology, 2012, 46(11):5 650-5 657.
Chen Z, Zhou X, Du J, et al. Hydrochemical characteristics of hot spring waters in the Kangding district related to the Lushan MS 7.0 earthquake in Sichuan, China[J]. Natural Hazards and Earth System Sciences, 2015, 15(6):1 149-1 156.
Giggenbach W F. Geothermal solute equilibria. Derivation of Na-K-Mg-Ca geoindicators[J]. Geochimica et Cosmochimica Acta, 1988, 52(12):2 749-2 765.
Toll N J, Rasmussen T C. Removal of barometric pressure effects and earth tides from observed water levels[J]. Ground Water, 2007, 45(1):101-105.
Yang P H, Cheng Q, Xie S Y, et al. Hydrogeochemistry and geothermometry of deep thermal water in the carbonate formation in the main urban area of Chongqing, China[J]. Journal of Hydrology, 2017, 549:50-61.
Zhou X C, Wang W C, Chen Z,et al. Hot spring gas geochemistry in Western Sichuan Province, China after the Wenchuan MS 8.0 Earthquake[J]. Terrestrial Atmospheric and Oceanic Sciences, 2015, 26(4):361-373.
Zhou X C, Liu L, Chen Z, et al. Gas geochemistry of the hot spring in the Litang fault zone, Southeast Tibetan Plateau[J]. Applied Geochemistry, 2017,79:17-26.