地震背景噪声成像方法已成为21世纪地震学的伟大突破之一,其原理是,对2个台站记录的连续背景噪声信号进行互相关计算,得到台站间的格林函数,利用经验格林函数得到面波速度函数,获取面波频散特性,用地震层析成像方法对面波速度进行反演,得到地球内部的速度结构。其应用近年来日益广泛,涉及各向同性和各向异性的速度结构成像、大地震前后速度结构变化监测、体波联合成像、衰减结构成像、地震定位精度提高、噪声源分布和物理起源探究、强地面运动评估等。其优点是不需要等待天然地震或使用对环境构成威胁的人工爆破,所有台阵都可以当作源,拓宽了频带范围,可以获得较多短周期频散数据,提高反演分辨率。
The seismic ambient noise tomography method has become one of the greatest breakthroughs in seismology in the 21st century. Its principle is that Green’s function between two stations can be obtained by cross-correlation calculation of continuous background noise signals recorded at the two stations, and the surface wave velocity function can be obtained by using the surface wave dispersion characteristics of the empirical Green’s function. Then seismic tomography is used to invert the surface wave velocity to get the velocity structure inside the Earth. In recent years, it has been widely used in isotropic and anisotropic velocity structure imaging, detection of velocity structure changes before and after large earthquakes, attenuation structure imaging, body wave imaging, improving the accuracy of seismic location, strong ground motion evaluation, exploring the distribution and physical origin of noise sources, etc. The advantage of this method is that there is no need to wait for natural earthquakes or to use artificial blasting that poses a threat to the environment. All arrays can be used as sources, which widens the frequency band range and enables more short-period dispersive data to be obtained, thus improving the resolution of inversion.
2023,44(2): 18-26 收稿日期:2022-3-8
DOI:10.3969/j.issn.1003-3246.2023.02.003
基金项目:青海格尔木青藏高原内部地球动力学野外科学观测研究站专项;2023年度震情跟踪定向工作任务(项目编号:2023010114);江苏省地震局青年科学基金(项目编号:202109)
作者简介:郭瑛霞(1990—),女,助理工程师,毕业于中国地震局兰州地震研究所,获硕士学位,主要从事地震活动性和数字地震学研究工作。E-mail:932319938@qq.com
参考文献:
范文渊,陈永顺,唐有彩,等. 青藏高原东部和周边地区地壳速度结构的背景噪声层析成像[J]. 地球物理学报,2015,58(5):1 568-1 583.
房立华,吴建平,吕作勇. 华北地区基于噪声的瑞利面波群速度层析成像[J]. 地球物理学报,2009,52(3):663-671.
冯红武,颜文华,严珊,等. 背景噪声和地震面波联合反演渭河盆地及邻区壳幔S波速度结构[J]. 地震地质,2019,41(5): 1 185-1 205.
付媛媛,肖卓.青藏高原东北缘及邻区Rayleigh和Love波背景噪声层析成像[J].地球物理学报,2020,63(3):860-870.
高业欣,燕云,朱叶琳,等. 利用接收函数和面波联合反演东北地区壳幔速度结构[J]. 防灾减灾学报,2020,36(3):41-46.
顾勤平,丁志峰,康清清,等. 郯庐断裂带中南段及邻区基于背景噪声的瑞利波群速度层析成像[J]. 地球物理学报,2020, 63(4):1 505-1 522.
郭瑛霞,张元生,刘旭宙,等. 应用背景噪声成像研究祁连山地区地壳S波速度结构[J].地震研究,2017,40(3):482-490.
黄翔,丁志峰,宁杰远,等.基于背景噪声研究华北克拉通中部Rayleigh波相速度和方位各向异性[J].地球物理学报,2021,64(8):2 701-2 715.
黄宇奇,查华胜,高级,等. 基于密集台阵地震背景噪声成像预测煤矿瓦斯分布[J]. 地球物理学报,2021,64(11):3 997- 4 011.
孔祥艳,吴建平,刘靖.利用背景噪声层析成像方法反演新疆天山及邻区S波速度结构[J].中国地震,2021,37(1):43-58.
李玲利,黄显良,姚华建,等. 合肥市地壳浅部三维速度结构及城市沉积环境初探[J]. 地球物理学报,2020,63(9):3 307- 3 323.
李想,姚华建,李昱,等. 偏离大圆路径传播对四川西部面波相速度成像的影响[J]. 地震学报,2015,37(1):15-28.
林融冰,曾祥方,宋政宏,等. 分布式光纤声波传感系统在近地表成像中的应用Ⅱ:背景噪声成像[J]. 地球物理学报,2020,63(4):1 622-1 629.
孟亚锋,姚华建,王行舟,等. 基于背景噪声成像方法研究郯庐断裂带中南段及邻区地壳速度结构与变形特征[J]. 地球物理学报,2019,62(7):2 490-2 509.
王未来,吴建平,房立华. 利用面波频散和接收函数联合反演华北地区的壳幔S波速度结构[C]//中国地球物理学会第二十五届年会论文集. 合肥:中国科学技术大学出版社,2009.
徐果明,李光品,王善恩,等. 用瑞利面波资料反演中国大陆东部地壳上地幔横波速度的三维构造[J]. 地球物理学报,2000,43(3):366-376.
姚华建,徐果明,肖翔,等.基于图像分析的双台面波相速度频散曲线快速提取方法[J]. 地震地磁观测与研究,2004,25(1):1-8.
叶庆东,丁志峰,郑晨,等. 大别-苏鲁及其邻近地区基于背景噪声的瑞雷波和勒夫波相速度层析成像[J]. 地震学报,2015,37(1):29-38.
曾求,储日升,盛敏汉,等. 基于地震背景噪声的四川威远地区浅层速度结构成像研究[J]. 地球物理学报,2020,63(3):944-955.
张丽娜,罗艳,陈智勇,等. 福建及其邻区背景噪声面波群速度层析成像[J]. 地震,2018,38(3):134-143.
郑晨,丁志峰,宋晓东. 面波频散与接收函数联合反演南北地震带北段壳幔速度结构[J]. 地球物理学报,2018,61(4):1 211-1 224.
郑定昌,盖增喜,杨润海,等. 云南地区背景噪声层析成像[J]. 地震学报,2014,36(4):602-614.
郑现,赵翠萍,周连庆,等. 中国大陆中东部地区基于背景噪声的瑞利波层析成像[J]. 地球物理学报,2012,55(6):1 919- 1 928.
朱子杰,王绪本,刘志强,等. 基于密集台阵资料的背景噪声研究青藏高原东南缘地震各向异性[J]. 地球物理学报,2021,64(3):823-837.
Aki K. Space and time spectra of stationary stochastic waves, with special reference to microtremors[J]. Bulletin of the Earthquake Research Institute, 1957, 35(3): 415-456.
Alexander S S. Surface wave propagation in the Western United States[D]. Pasadena: California Institute of Technology, 1963.
Brune J N, NafeJ E, Oliver J E. A simplified method for the analysis and synthesis of dispersed wave trains[J]. Journal of Geophysical Research, 1960, 65(1): 287-303.
Campillo M, Paul A. Long-range correlations in the diffuse seismic coda[J]. Science, 2003, 299(5 606): 547-549.
Claerbout J F. Synthesis of a layered medium from its acoustic transmission response[J]. Geophysics, 1968, 33(2): 264-269.
Derode A, Tourin A, Fink M. Random multiple scattering of ultrasound. Ⅱ. Is time reversal a self-averaging process[J]. Physical Review E, 2001, 64(3): 036606.
Duvall Jr T L, Jefferies S M, Harvey J W, et al. Time-distance helioseismology[J]. Nature, 1993, 362(6 419): 430-432.
Dziewonski A, Bloch S, Landisman M. A technique for the analysis of transient seismic signals[J]. Bulletin of the Seismological Society of America, 1969, 59(1): 427-444.
Fang H J, Yao H J, Zhang H J, et al. Direct inversion of surface wave dispersion for three-dimensional shallow crustal structure based on ray tracing: methodology and application[J]. Geophysical Journal International, 2015, 201(3): 1 251-1 263.
Fang L H, Wu J P, Ding Z F, et al. High resolution Rayleigh wave group velocity tomography in North China from ambient seismic noise[J]. Geophys J Int, 2010, 181(2): 1 171-1 182.
Herrin E, Goforth T. Phase-matched filters: Application to the study of Rayleigh waves[J]. Bull Seismol Soc Am, 1977, 67(5): 1 259-1 275.
Huang Y C, Yao H J, Huang B S, et al. Phase velocity variation at periods of 0.5-3 seconds in the Taipei Basin of Taiwan from correlation of ambient seismic noise[J]. Bull Seismol Soc Am, 2010, 100(5A): 2 250-2 263.
Landisman M, Dziewonski A, Satô Y. Recent improvements in the analysis of surface wave observations[J]. Geophysical Journal International, 1969, 17(4): 369-403.
Li C, Yao H J, Fang H J, et al. 3D near‐surface shear‐wave velocity structure from ambient‐noise tomography and borehole data in the Hefei Urban Area, China[J]. Seismological Research Letters, 2016, 87(4): 882-892.
Li H Y, Li S T, Song X D, et al. Crustal and uppermost mantle velocity structure beneath northwestern China from seismic ambient noise tomography[J]. Geophysical Journal International, 2012, 188(1): 131-143.
Li H, Su W, Wang C, Huang Z. Ambient noise Rayleigh wave tomography in western Sichuan and eastern Tibet[J]. Erath Planet Sci Lett, 2009, 282(1/4): 201-211.
Lin F C, Tsai V C, Schmandt B, et al. Extracting seismic core phases with array interferometry[J]. Geophysical Research Letters, 2013, 40(6): 1 049-1 053.
Lobkis O I,Weaver R L. On the emergence of the Green’s function in the correlations of a diffuse field[J]. The Journal of the Acoustical Society of America, 2001, 110(6): 3 011-3 017.
Paul A, Campillo M, Margerin L, et al. Empirical synthesis of time-asymmetrical Green functions from the correlation of coda waves[J]. Journal of Geophysical Research: Solid Earth, 2005, 110(B8): B08302.
Pilant W L, Knopoff L. Observations of multiple seismic events[J]. Bull Seismol Soc Am, 1964, 54(1): 19-39.
Rawlinson N, Sambridge M. Wave front evolution in strongly heterogeneous layered media using the fast marching method[J]. Geophysical Journal International, 2004, 156(3): 631-647.
Ritzwoller MH, Shapiro NM, Barmin MP, et al. Global surface wave diffraction tomography[J]. J Geophys Res: Solid Earth, 2002, 107(B12): ESE 4-1-ESE 4-1. doi: 10.1029/2002JB001777.
Shapiro N M, Campillo M, Stehly L, et al. High-resolution surface-wave tomography from ambient seismic noise[J]. Science, 2005, 307(5 715): 1 615-1 618.
Shapiro N M, Campillo M. Emergence of broadband Rayleigh waves from correlations of the ambient seismic noise[J]. Geophysical Research Letters, 2004, 31(7): L07614.
Snieder R. Extracting the Green’s function from the correlation of coda waves: a derivation based on stationary phase[J]. Physical Review E: Statistical, Nonlinear, Biological, and Soft Matter Physics, 2004, 69(4): 046610.
Stehly L, Campillo M, Shapiro N M. A study of the seismic noise from its long-range correlation properties[J]. Journal of Geophysical Research: Solid Earth, 2006, 111(B10): B10306.
Tang Y, Chen Y J, Zhou S, et al. Lithosphere structure and thickness beneath the North Craton from joint inversion of ambient noise and surface wave tomography[J]. Journal of Geophysical Research: Solid Earth, 2013, 118(5): 2 333-2 346.
Wapenaar K, Thorbecke J, Draganov D. Relations between reflection and transmission responses of three-dimensional inhomogeneous media[J]. Geophysical Journal International, 2004, 156(2): 179-194.
Weaver R L. Information from seismic noise[J]. Science, 2005, 307(5 715): 1 568-1 569.
Yang Y, Zheng Y, Ritzwoller M H. Surface wave phase velocities and azimuthal anisotropy in Tibet and surrounding regions from ambient noise tomography[C]//AGU Fall Meeting. AGU, 2009.
Yao H J, Beghein C, van der Hilst R D. Surfacewave array tomography in SE Tibet from ambient seismic noise and two-station analysis-Ⅱ. Crustal and upper-mantle structure[J]. Geophysical Journal International, 2008, 173(1): 205-219.
Yao H J, van der Hilst R D, de Hoop M V. Surface-wave array tomography in SE Tibet from ambient seismic noise and two-station analysis-I. Phase velocity maps[J]. Geophys J Int, 2006, 166(2): 732-744.
Zheng Y, Yang Y J, Ritzwoller M H, et al. Crustal structure of the northeastern Tibetan plateau, the Ordos block and the Sichuan basin from ambient noise tomography[J]. Earthquake Science, 2010, 23(5): 465-476.