徐州市城市轨道交通6号线设计路线穿过徐州市区,沿线车流量较大、地下管线复杂,且存在断裂和多处溶洞。为查明研究区0—60 m深度范围内断裂、溶洞的发育特征,结合城区工作环境,沿线路中线布设测线,采用瞬变电磁法和地质雷达法进行综合探测。对于等值反磁通瞬变电磁法,在探测前进行抗电性干扰能力和反演参数试验。对瞬变电磁实测数据进行精细化处理,反演结果表明:在剖面西侧260—540 m区段存在断裂F1,倾角约60°,宽度约280 m,断裂带内岩体破碎,岩溶发育;在剖面东侧1 060—1 210 m区段呈低阻异常,显示为邵楼断裂(F60),倾向SE,倾角70°—75°,为一压扭性同生正断层;断裂F1为邵楼断裂(F60)的次生断裂。探地雷达结果表明,在反演剖面280—340 m区段12—16 m深度和410—510 m区段11—17 m深度处有岩溶发育。对瞬变电磁探测的岩溶异常进行钻孔验证,结果表明物探推断的异常可靠,异常深度与钻孔结果略有差异。
The design route of Xuzhou Urban Rail Transit Line 6 passes through the urban area of Xuzhou, with high traffic flow, complex underground pipelines, and the presence of fractures and many caves. In order to identify the development characteristics of fractures and caves in the study area within a depth range of 0-60 m, a survey line was laid along the centre line of the line in combination with the working environment of the urban area, and a combination of transient electromagnetic method and geo-radar method was used for the detection. For the equivalent inverse flux transient electromagnetic method, tests on electrical interference resistance and inversion parameters were carried out prior to detection. Refinement of the transient electromagnetic measured data was carried out, and the inversion results show that: in the 260-540 m section on the west side of the profile, there is a fracture F1 with a dip of about 60° and a width of about 280 m. The rock body in the fracture zone is broken and karst is developed; in the 1 060-1 210 m section on the east side of the profile, there is a low-resistance anomaly, indicating the Shaolou fracture (F60), which tends to SE and dips 70°-75°, is a compression-torsional syngenetic orthotropic fault; Fault F1 is a secondary fault of the Shaolou Fault (F60). Ground-penetrating radar results indicate karst development at depths of 12-16 m in the 280-340 m section and 11-17 m in the 410-510 m section of the inversion profile. The karst anomalies from the transient electromagnetic sounding were verified by drilling, and the results indicate that the anomalies inferred from the physical sounding are reliable, with slight discrepancies between the depth of the anomalies and the drilling results.
2023,44(2): 170-179 收稿日期:2023-2-20
DOI:10.3969/j.issn.1003-3246.2023.02.022
作者简介:赵远程(1992—),男,工程师,硕士,主要从事工程地球物理勘察工作。E-mail:zycbeijing_cugb@163.com
参考文献:
蔡勤波,罗振丽,穆建强,等. 高密度电法在城市勘察中的应用[J].勘察科学技术,2021,(3):56-60.
陈丁,张景发,朱鲁,等. 徐州废黄河断裂带的空间展布与活动性研究[J]. 地震地质,2011,33(1):67-78. doi:10.3969/j.issn.0253-4967.2011.01.007.
黄毓铭,张晓峰,谢尚平,等. 综合物探方法在南宁地铁溶洞探测中的应用[J].地球物理学进展,2017,32(3):1 352-1 359.
李士永.物探技术在城市轨道交通岩溶勘察中的应用[J].山西建筑,2021,47(3):64-65.
李学军.城市工程地球物理探测技术应用——《城市工程地球物理探测规范》(CJJ7—2007)编制综述[J].工程勘察,2009,37(3):83-88.
李兆祥,贺剑波,李昌宁,等.地质雷达和微动探测技术在地铁勘察中的综合应用[J].冶金管理,2021,(9):97-98.
廖志伟,邹其峰.等值反磁通瞬变电磁与地质雷达组合在塌陷渗漏探测中的应用[J].世界有色金属,2022,(7):169-171.
刘宗辉,刘毛毛,周东,等. 基于探地雷达属性分析的典型岩溶不良地质识别方法[J].岩土力学,2019,40(8):3 282-3 290. doi:10.16285/j.rsm.2018.0796.
龙霞,席振铢,周胜,等. 等值反磁通原理瞬变电磁法探测薄层能力[J]. 地球物理学进展,2020,35(2):753-759.
亓庆新,席振铢,徐昱,等. 等值反磁通瞬变电磁法天线零磁通面位置的确定方法[J]. 物探与化探,2022,46(6):1 540- 1 544. doi:10.11720/wtyht.2022.1599.
万小乐.等值反磁通瞬变电磁法在城市轨道交通岩溶勘察中的应用[J].地质学刊,2022,46(4):436-440.
王凯. 瞬变电磁法探测煤矿充水采空区响应特征分析[D]. 太原:太原理工大学,2012.
王亮,龙霞,王婷婷,等.等值反磁通瞬变电磁法在城市浅层空洞探测中的应用[J].物探与化探,2022,46(5):1 289-1 295.
吴建伟,袁亚坤.综合物探手段在岩溶区地铁勘察中的应用[J].工程建设与设计,2022,(18):29-31. doi:10.13616/j.cnki.gcjsysj.2022.09.209.
席振铢,龙霞,周胜,等. 基于等值反磁通原理的浅层瞬变电磁法[J]. 地球物理学报,2016,59(9):3 428-3 435.
熊彩霞,刘沂轩,文武. 徐州市区地质构造与岩溶塌陷分布的关系分析[J]. 工程技术研究,2018,(10):225-226. doi:10.3969/j.issn.1671-3818.2018.10.105.
杨建明,王洪昌,沙椿.基于等值反磁通瞬变电磁法的岩溶探测分析[J].物探与化探,2018,42(4):846-850.
余涛,王小龙,王俊超.综合物探方法在城市地铁岩溶勘察中的应用[J]. CT理论与应用研究,2022,31(5):587-596. doi:10.15953/j.ctta.2021.073.
张孝勇,李耐宾,裴世建.等值反磁通瞬变电磁法在地铁岩溶勘察中的应用[J].铁道勘察,2022,48(5):52-56. doi:10.19630/j.cnki.tdkc.202103290003.