选取2019—2020年西藏、云南、四川、青海、新疆地震台网记录的MS≥5.5远震事件P波数据,采用P波质点运动方法,计算中国西北、西南地区211个地震台站方位角及其随时间的变化。结果显示,约53%的台站方位角偏差绝对值始终小于3°,运维状况极佳;约39%的台站方位角偏差绝对值保持在3°—10°,运维良好;约9%的台站方位角偏差绝对值大于10°,少数台站存在极性反转等现象。在运行维护过程中,部分台站受到更换或移动地震计等人为因素的影响,地震计方位角出现短时跳变现象。为保证地震数据的可靠性,应定期对台站方位角进行检查和校正,以便为地震学研究提供可靠的基础数据。
P-wave data from teleseismic events with MS ≥ 5.5 were collected from the seismic networks in Tibet, Yunnan, Sichuan, Qinghai, and Xinjiang between 2019 and 2020.Utilizing the P-wave particle motion method, the azimuth angles of 211 seismic stations in the northwest and southwest regions of China, and the variations over time, were calculated. The results show that approximately 53% of the stations exhibited excellent performance, with azimuth deviations smaller than 3° from the true north;about 39% of the stations showed good performance, with azimuth deviations ranging from 3° to 10°; approximately 9% of the stations have azimuth angle deviations with absolute values larger than 10°, with a few stations exhibiting phenomena such aspolarity reversal. During operation and maintenance, some seismic instruments were affected by human factors such as the replacement or relocation of seismometers, leading to short-term abrupt changes in the seismometer's azimuth angle. To ensure the reliability of seismic data, it is recommended to periodically check and calibrate the azimuth angles of the stations, thus providing reliable foundational data for seismological research.
2023,44(4): 1-8 收稿日期:2023-05-09
DOI:10.3969/j.issn.1003-3246.2023.04.001
基金项目:中国地震局地震科技星火计划项目(项目编号:XH233707YB);中国地震台网中心青年科技基金(项目编号:QNJJ-202220)
作者简介:韩光洁(1993-),工程师,主要从事地震监测和震源物理学方面的研究。E-mail:hangj@seis.ac.cn
参考文献:
陈兵,王庆良,张四新,等. 青藏块体北部构造形变与玉门5.9级地震[J]. 大地测量与地球动力学,2003,23(2):23-28.
陈继锋,李亮,李少睿,等. 甘肃省测震台网地震台站地震计方位角检验与校正[J]. 地震工程学报,2016,38(3):460-465.
陈家樑,戴丽金,张宝剑. 利用P波质点运动检测福建台网地震计方位角[J]. 华北地震科学,2021,39(3):45-50.
李少睿,赵建和,王党席,等. 全国测震台站仪器方位角普查校正[J]. 地震地磁观测与研究,2014,35(1/2):224-230.
李伟,丁志峰,孙伟家. 利用地震光照成像法研究青藏高原东南缘岩石圈间断面结构及其动力学意义[J]. 地震学报,2019,41(5):549-568.
王婷,薛梅. 阿留申群岛地震台站方位角变化及其对横波分裂的影响[J]. 地震学报,2020,42(2):187-195.
魏贵春,姚运生,张丽芬,等. 方位角对地方震震级测定的影响[J]. 地震学报,2017,39(6):880-890.
许英才,曾宪伟,许文俊,等. 基于台阵的青藏高原东北缘海原-六盘山断裂带及邻区地壳结构研究[J]. 中国地震,2018,34(3):484-497.
中国地震局. DB/T 22-2020地震观测仪器进网技术要求地震仪[S]. 2020.
Baker G E, Stevens J L. Backazimuth estimation reliability using surface wave polarization[J]. Geophysical Research Letters, 2004, 31(9):L09-611.
Davis P M. Azimuthal variation in seismic anisotropy of the southern California uppermost mantle[J]. Journal of Geophysical Research:Solid Earth, 2003, 108(B1):2 052.
Doran A K, Laske G. Ocean-bottom seismometer instrument orientations via automated Rayleigh-wave arrival-angle measurements[J]. Bulletin of the Seismological Society of America, 2017, 107(2):691-708.
Ekström G, Busby R W. Measurements of seismometer orientation at USArray transportable array and backbone stations[J]. Seismological Research Letters, 2008, 79(4):554-561.
Fontaine F R, Barruol G, Kennett B L N, et al. Upper mantle anisotropy beneath Australia and Tahiti from P wave polarization:implications for real-time earthquake location[J]. Journal of Geophysical Research:Solid Earth, 2009, 114(B3):B03306.
Jurkevics A. Polarization analysis of three-component array data[J]. Bulletin of the Seismological Society of America, 1988, 78(5):1 725-1 743.
Laske G. Global observation of off-great-circle propagation of long-period surface waves[J]. Geophysical Journal International, 1995, 123(1):245-259.
Lockman A B, Allen R M. Single-station earthquake characterization for early warning[J]. Bulletin of the Seismological Society of America, 2005, 95(6):2 029-2 039.
Niu F L, Li J. Component azimuths of the CEArray stations estimated from P-wave particle motion[J]. Earthquake Science, 2011, 24(1):3-13.
Noda S, Yamamoto S, Sato S, et al. Improvement of back-azimuth estimation in real-time by using a single station record[J]. Earth, Planets and Space, 2012, 64(3):305-308.
Ojo A O, Zhao L, Wang X. Estimations of sensor misorientation for broadband seismic stations in and around Africa[J]. Seismological Research Letters, 2019, 90(6):2 188-2 204.
Ringler A T, Hutt C R, Persefield K, et al. Seismic station installation orientation errors at ANSS and IRIS/USGS stations[J]. Seismological Research Letters, 2013, 84(6):926-931.
Rueda J, Mezcua J. Orientation analysis of the spanish broadband national network using Rayleigh-wave polarization[J]. Seismological Research Letters, 2015, 86(3):929-940.
Schulte-Pelkum V, Masters G, Shearer P M. Upper mantle anisotropy from long-period P polarization[J]. Journal of Geophysical Research:Solid Earth, 2001, 106(B10):21 917-21 934.
Selby N D. Association of Rayleigh waves using backazimuth measurements:application to test ban verification[J]. Bulletin of the Seismological Society of America, 2001, 91(3):580-593.
Stachnik J C, Sheehan A F, Zietlow D W, et al. Determination of new Zealand ocean bottom seismometer orientation via Rayleigh-wave polarization[J]. Seismological Research Letters, 2012, 83(4):704-713.
Wang X, Chen Q F, Li J, et al. Seismic sensor misorientation measurement using P-wave particle motion:an application to the NECsaids array[J]. Seismological Research Letters, 2016, 87(4):901-911.
Zeng S J, Zheng Y, Niu F L, et al. Measurements of seismometer orientation of the first phase CHINArray and their implications on vector-recording-based seismic studies[J]. Bulletin of the Seismological Society of America, 2020, 111(1):36-49, doi:10.1785/0120200129.
Zha Y, Webb S C, Menke W. Determining the orientations of ocean bottom seismometers using ambient noise correlation[J]. Geophysical Research Letters, 2013, 40(14):3 585-3 590.