针对内蒙古地区地形东西跨度大、台站分布不均匀、监测能力较为薄弱的特点,基于概率的完整性震级(PMC)方法,依托内蒙古重大项目监测台网的数字资料,选取内蒙古重大地震台网及周边邻省共108个地震台站所记录的4 087个地震,开展重大项目监测台网的监测能力评估。评估结果显示,内蒙古西部地区最小完整性震级为ML 1.3,地震监测能力相对较弱;内蒙古中西部地区和东部地区最小完整性震级分别为ML 0.6、ML 0.7,地震监测能力相对较强。
Given the characteristics of Inner Mongolia, with a large east-west geographical span,uneven distribution of stations, and relatively weak monitoring capabilities, an assessment was conducted on the monitoring capacity of the major project observation network in Inner Mongolia. This assessment was based on the probability integrity magnitude (PMC) method. Utilizing the digital data from the Inner Mongolia major project monitoring network, 4 087 earthquakes recorded by a total of 108 seismic stations in Inner Mongolia seismic network and its neighboring provinces were selected for this study. The results show that the minimum complete magnitudes in the western part of Inner Mongolia is ML1.3, indicating a relatively weak earthquake monitoring capability. In contrast, the minimum complete magnitudes in the central-western and eastern regions of Inner Mongolia are ML 0.6 and ML 0.7 respectively, signifying a relatively stronger earthquake monitoring capability.
2023,44(4): 34-40 收稿日期:2021-10-12
DOI:10.3969/j.issn.1003-3246.2023.04.006
基金项目:中国地震局监测、预报、科研三结合课题(项目编号:3JH-2021011);内蒙古自治区地震局局长基金(项目编号:2022JC04)
作者简介:赵艳红(1979-),女,高级工程师,主要从事地震监测、数字地震资料应用工作。E-mail:530001094@qq.com
*通讯作者:翟浩(1990-),男,工程师,主要从事地震监测工作。E-mail:496831965@qq.com
参考文献:
安祥宇,赵倩,王晓睿,等. 基于PMC方法的辽宁测震台网监测能力评估[J]. 地震工程学报,2019,41(6):1 545-1 552.
曹刚. 内蒙古地震研究[M]. 北京:地震出版社,2001.
蒋长胜,房立华,韩立波,等. 利用PMC方法评估地震台阵的地震检测能力——以西昌流动地震台阵为例[J]. 地球物理学报,2015,58(3):832-843.
焦远碧,吴开统,杨满栋.我国地震台网监测能力及台网观测条件质量评定[J].中国地震,1990,6(4):1-7.
李智超,黄清华. 基于概率完备震级评估首都圈地震台网检测能力[J]. 地球物理学报,2014,57(8):2 584-2 593.
刘芳,蒋长胜,张帆,等. 基于EMR方法的内蒙古测震台网监测能力[J]. 地球科学(中国地质大学学报),2013,38(6):1 356-1 362.
刘芳,蒋长胜,张帆,等. 内蒙古区域地震台网监测能力研究[J]. 地震学报,2014,36(5):919-929.
王鹏,郑建常,李铂. 基于PMC方法的山东省测震台网监测能力评估[J]. 地球物理学进展,2016,31(6):2 408-2 414.
王亚文. 测震台网监测能力评估技术的比较研究[D].北京:中国地震局地球物理研究所,2017.
Enescu B, Ito K. Spatial analysis of the frequency-magnitude distribution and decay rate of aftershock activity of the 2000 Western Tottori earthquake[J]. Earth, Planets and Space, 2002, 54(8):847-859.
Gomberg J, Reasenberg P A, Bodin P, et al. Earthquake triggering by seismic waves following the Landers and Hector Mine earthquakes[J]. Nature, 2001, 411(6 836):462-466.
Knopoff L. The magnitude distribution of declustered earthquakes in Southern California[J]. Proceedings of the National Academy of Sciences of the United States of America, 2000, 97(22):11 880-11 884.
Main I. Apparent breaks in scaling in the earthquake cumulative frequency-magnitude distribution:Fact or artifact?[J].Bulletin of the Seismological Society of America, 2000, 90(1):86-97.
Mignan A. Functional shape of the earthquake frequency-magnitude distribution and completeness magnitude[J]. Journal of Geophysical Research:Solid Earth, 2012, 117(B8):B08302.
Nanjo K Z, Ishibe T, Tsuruoka H, et al. Analysis of the completeness magnitude and seismic network coverage of Japan[J]. Bulletin of the Seismological Society of America, 2010, 100(6):3 261-3 268.
Stein R S. The role of stress transfer in earthquake occurrence[J]. Nature, 1999, 402(6 762):605-609.
Wiemer S, Wyss M. Minimum magnitude of completeness in earthquake catalogs:examples from Alaska, the western united states, and Japan[J]. Bulletin of the Seismological Society of America, 2000, 90(4):859-869.
Woessner J, Hauksson E, Wiemer S, et al. The 1997 Kagoshima(Japan) earthquake doublet:A quantitative analysis of aftershock rate changes[J]. Geophysical Research Letters, 2004, 31(3):L03605, doi:10.1029/2003GL018858.
Woessner J, Wiemer S. Assessing the quality of earthquake catalogues:estimating the magnitude of completeness and its uncertainty[J]. Bulletin of the Seismological Society of America, 2005, 95(2):684-698.