地震信号是典型的非平稳随机信号,容易受到场地条件和周边环境的影响,产生噪声干扰。采用自适应噪声完备集合经验模态分解(CEEMDAN)方法,对地震数据进行分析预处理,将地震信号分解成一系列具有不同特征时间尺度的固有模态函数(IMF);对各IMF分量进行自相关计算,筛选含噪IMF分量,使用软阈值小波包方法进行去噪处理,与无噪分量进行重构,从而降低噪声干扰,提高数据质量。
Seismic signals are typical non-stationary random signals that are susceptible to site conditions and the surrounding environment, resulting in noise interference. In this paper, the adaptive noise-complete ensemble empirical mode decomposition (CEEMDAN) method is used to analyze and preprocess the seismic data, which decomposes the seismic signal into a series of intrinsic modal functions (IMF) with different characteristic time scales. The autocorrelation calculation of each IMF component was carried out, the noisy IMF component was screened, and the noisy IMF component was denoised by the soft threshold wavelet packet method. The denoised component and the noise-free component are reconstructed to reduce noise interference and improve data quality.
2023,44(5): 29-36 收稿日期:2023-06-26
DOI:10.3969/j.issn.1003-3246.2023.05.004
基金项目:黑龙江省地震局重点项目(项目编号:202307)
作者简介:梁阿全(1981-),男,硕士研究生,工程师,研究方向:地震数据分析、信号处理。E-mail:43326298@qq.com
参考文献:
蔡超志,白金鑫,池耀磊,等.基于CEEMDAN自适应小波降噪与卷积神经网络的齿轮箱故障诊断研究[J].机床与液压,2022,50(24):171-180.
高成. Matlab小波分析与应用[M].北京:国防工业出版社,2007.
黄艳林. SVD与EMD联合去噪方法在地震勘探数据处理中的研究与应用[J].地震工程学报,2016,38(2):323-326.
刘洋君,薛兵,朱小毅,等.地震计自噪声的研究[J].地震,2010,30(1):138-146.
马莹莹,靳雪振.基于EEMD和小波阈值的短时交通流预测研究[J].重庆交通大学学报(自然科学版),2022,41(6):22-29.
齐绍洲,赵鑫,谭秀杰.基于EEMD模型的中国碳市场价格形成机制研究[J].武汉大学学报(哲学社会科学版),2015,68(4):56-65.
谢锋云,刘慧,胡旺,等. CEEMDAN与参数优化多尺度排列熵结合的滚动轴承早期故障诊断[J/OL].机械科学与技术,2023:1-7[2023-06-20]. http://doi.org/10.13433.j.cnkj.1003-8728.20220107.
殷明,方根显.基于小波和CEEMDAN的地震信号噪声压制[J].物探化探计算技术,2021,43(3):282-289.
朱敏,段志善,郭宝良. EEMD结合小波包的振动筛轴承信号降噪效果分析[J].机械设计与制造,2020,(5):63-67.
Torres M E, COLOMINAS M A, SCHLOTTHAUER G, et al. A complete ensemble empirical mode decomposition with adaptive noise[C]//IEEE International Conference on Acoustics, Speech and Signal Processing. Prague:IEEE, 2011:4 144-4 147.