为了提高对地磁秒采样数据中移动车辆干扰的处理、提取效率,基于小波变换设计了移动车辆干扰自动识别处理方法,并采用溧阳地震台、河池地震台受干扰数据进行分析。结果显示,采用该方法,选择db6、db9、sym8小波识别提取移动车辆干扰,识别率大于91%,正确率大于83%。
In order to improve the processing and extraction efficiency of mobile vehicle interference in geomagnetic second data, a set of automatic recognition and processing methods for mobile vehicle interference was designed based on wavelet transform. The interference data from Liyang and Hechi stations were analyzed and studied. The results show that selecting db6 wavelet, db9 wavelet, and sym8 wavelet to identify and extract moving vehicle interference can achieve a maximum recognition rate of over 91% and a maximum accuracy rate of over 83%.
2024,45(1): 69-77 收稿日期:2023-09-12
DOI:10.3969/j.issn.1003-3246.2024.01.010
基金项目:中国地震局监测、预报、科研三结合课题(项目编号:3JH-202302030);江苏省地震局青年科学基金(项目编号:202107)
参考文献:
罗棋,李查玮. 抑制地磁秒数据干扰的几种滤波算法比较[J]. 武汉轻工大学学报,2019,38(6):56-60.
吴利辉. 基于小波分析的地铁地磁干扰抑制方法研究[D]. 北京:中国地震局地球物理研究所,2009.
谢凡. 地磁观测数据中人工电磁干扰抑制技术研究[D]. 北京:中国地震局地球物理研究所,2011.
谢凡,滕云田,胡星星. 数学形态滤波在地磁数据干扰抑制中的应用[J]. 地球物理学进展,2011,26(1):147-156.
Mallat S, Hwang W L. Singularity detection and processing with wavelets[J]. IEEE Transactions on Information Theory, 1992, 38(2):617-643.
Tu C L, Hwang W L, Ho J. Analysis of singularities from modulus maxima of complex wavelets[J]. IEEE Transactions on Information Theory, 2005, 51(3):1 049-1 062.