随着城市建设的发展,爆破事件逐渐增多,其数据记录叠加在地震波形中造成显著干扰。以2016年6月14日黑龙江省牡丹江地震台记录的ML 2.0爆破事件为例,选取甚宽频带CTS-1EF地震计垂直向数据记录进行爆破信号的IMF分解及信号重构,以信噪比SNR和相关系数R作为检验指标,对重构效果进行评价。结果显示,采用集合经验模式EEMD和小波阈值方法进行数据预处理,信噪比更大,相关系数接近于1,重构效果优于单一方法。选取镜泊湖火山监测台网记录的8个ML 2.3—2.8爆破事件,采用EEMD+小波分解的联合方法进行IMF分解及数据重构,结果表明,高频噪声干扰被有效降低,突显了局部主体信号,随机噪声被有效压制。采用该方法进行降噪处理,重构信号更能反映爆破信号的变化特性,可为爆破数据降噪分析提供依据。
With the development of urban construction, the number of blasting events has gradually increased, and its data records are superimposed on the seismic waveform, which cause significant interference. Taking the ML 2.0 blasting event recorded on the Mudanjiang seismic station in Heilongjiang Province on June 14, 2016 as an example, the vertical data record of the very wideband CTS-1EF seismometer was selected to perform the IMF decomposition and signal reconstruction of the blasting signal, and the signal-to-noise ratio (SNR) and correlation coefficient R were used as test indicators to evaluate the reconstruction effect. The results show that the ensemble empirical mode EEMD and wavelet threshold method are used for data preprocessing, the signal-to-noise ratio is larger, the correlation is closer to 1, and the reconstruction effect is better than the result of the single method. 8 ML 2.3-2.8 blasting events recorded by the Jingpo Lake Volcano Monitoring Network were selected, and the IMF decomposition and data reconstruction were carried out by the combined method of EEMD and wavelet decomposition, which results showed that the high-frequency noise interference was effectively reduced, the local main signal was highlighted, and the random noise was effectively suppressed. This method is used for noise reduction, and the reconstructed signal can better reflect the changing characteristics of blasting data, which can provide a reference for noise reduction analysis of blasting data.
2024,45(3): 55-62 收稿日期:2024-02-27
DOI:10.3969/j.issn.1003-3246.2024.03.007
基金项目:黑龙江省地震局科研项目(项目编号:202413)
作者简介:梁阿全(1981—),男,工程师,现从事地震监测工作。E-mail:43326298@qq.com
参考文献:
陈真诚,吴贤亮,赵飞骏. EEMD结合小波阈值的光电容积脉搏波信号降噪[J].光学精密工程,2019,27(6):1 327-1 334.
费鸿禄,刘梦,曲广建,等. 基于集合经验模态分解-小波阈值方法的爆破振动信号降噪方法[J]. 爆炸与冲击,2018,38(1):112-118.
刘莎,杨建思,田宝峰,等. 首都圈地区爆破、矿塌和天然地震的识别研究[J]. 地震学报,2012,34(2):202-213.
刘洋君,薛兵,朱小毅,等. 地震计自噪声的研究[J]. 地震,2010,30(1):138-146.
柳建新,韩世礼,马捷. 小波分析在地震资料去噪中的应用[J]. 地球物理学进展,2006,21(2):541-545.
饶运章,王柳,饶睿,等. 基于EMD与小波阈值的爆破震动信号去噪方法[J]. 福州大学学报(自然科学版),2015,43(2):271-277.
田婕,张云鹏,闫鹏,等. 基于CEEMD的露天深孔爆破振动信号降噪光滑模型[J/OL]. 爆破,(2023-08-14)[2024-05-13].http://kns.cnki.net/kcms/detail/42.1164.TJ.20230814.1056.012.html.
王红军,万鹏. 基于EEMD和小波包变换的早期故障敏感特征获取[J]. 北京理工大学学报,2013,33(9):945-950.
杨潞霞,樊东燕,周任军. 基于EEMD结合二次小波包降噪的齿轮箱故障诊断[J]. 中北大学学报(自然科学版),2016,37(3):262-267.
张雪英,谢飞,乔铁柱,等. 基于EEMD与改进小波阈值的磁记忆信号降噪研究[J]. 太原理工大学学报,2015,46(5):592- 597.
周红敏,赵事成,王慧珍,等. 基于LMD-MFE-SVD的松动爆破降噪分析[J]. 爆破,2023,40(4):174-182.
周少辉,蒋海昆,曲均浩,等. 爆破、塌陷识别研究进展综述[J]. 中国地震,2021,37(2):508-522.
Huang N E, Shen Z, Long S R, et al. The empirical mode decomposition method and the Hilbert spectrum for nonlinear and non-stationary time series analysis[J]. Proc R Soc Lond A, 1998, 454(1 971): 903-995.
Wu Z H, Huang N E. Ensemble empirical mode decomposition: a noise-assisted data analysis Method[J]. AADA: Advances in Adaptive Data Analysis, 2009, 1(1): 1-41.