2020年7月12日唐山古冶发生MS 5.1地震,对其发震断层几何形状和滑动性质,以及后续余震的应力触发进行研究,主要得到以下结论:①发震构造:基于收集的古冶震源区地震精定位结果,使用改进的模糊聚类分析方法,计算得到断层的几何形状和断层空间分布,其中断层走向为230.2°,倾角为86.2°;基于震源机制得到该地区构造应力场,并将构造应力场投影到发震断层面上,得到该地震发震断层滑动角,数值为-177.2°。②应力触发:基于经验公式,得到该地震破裂模型,其断层长为3.9 m,宽为4.4 m,断层滑动量为1.9 cm;基于破裂模型和PSGRN/PSCMP软件包,计算该地震对MS 4.3余震和其他余震的应力触发,结果显示:不同深度上的主震对余震的应力触发不同,其中,主震在12 km深度上对余震的应力触发比例最高;在计算主震对MS 4.3余震的应力触发时,发现其位于主震引起的库仑应力变化为正的区域,表明该地震受到MS 5.1地震的触发作用。本研究结果对研究和了解唐山震源区地震断层的发震构造以及地震危险性具有一定意义。
On July 12nd, 2020, the MS 5.1 earthquake occurred in Guye, Tangshan. This paper primarily investigates the fault geometry and slip properties, as well as the stress triggering of subsequent after shocks. The main conclusions are as follows:① Regarding the seismogenic structure, based on the precise seismic relocation results of the Guye earthquake, the improved fuzzy clustering analysis method was used to calculate the fault geometry and spatial distribution of the fault. The strike of the fault is 230.2°, and the dip angle is 86.2°. Based on the focal mechanism, the tectonic stress field of the region was obtained, and project the tectonic stress field onto the seismogenic fault plane, the slip angle of the fault was -177.2°. ② In terms of stress triggering, thepaper derives the earthquake rupture model based on empirical formulas, the fault length is 3.9 m and width is 4.4 m, and a fault slip is 0.02 m; Based on the rupture model and PSGRN/PSCMP software packages, we calculated the earthquake stress triggering on MS 4.3 aftershock and other aftershocks. The results shows that the triggering by the main shock on aftershocks varies at different depths, with the highest proportion of stress triggering on aftershocks at the depth of 12 km. When calculating the triggering of the MS 5.1 earthquake on the MS 4.3 earthquake, we found that the magnitude 4.3 earthquake was located in the area where the Coulomb stress change caused by the MS 5.1 earthquake was positive, indicating that the earthquake was triggered by the MS 5.1 event. The research results of this paper have certain significance for studying and understanding the seismogenic structure and seismic risk in Tangshan area.
2024,45(6): 2-13
DOI:10.3969/j.issn.1003-3246.2024.06.001
基金项目:国家自然科学基金(项目编号:42174074,41674055)
作者简介:靳志同(1984—),男,教授,博士,主要从事地震应力场和地震危险性的研究。E-mail:jinzhitong@cidp.edu.cn
参考文献:
高原,郑斯华,孙勇.唐山地区地壳裂隙各向异性[J].地震学报,1995,17(3):283-293.
郭祥云,郑重. 2020年7—8月全球5.0级以上地震动态[J]. 地震地磁观测与研究,2020,41(4):275-278.
靳志同,万永革,刘兆才,等. 2017年九寨沟MS 7.0地震对周围地区的静态应力影响[J]. 地球物理学报,2019,62(4):1 282-1 299.
靳志同,万永革,王福昌,等. 2013年和2022年芦山地震序列断层面花状构造及其滑动特性研究[J]. 地球物理学报,2024,67(6):2 202-2 219.
李枭,万永革,王晓山,等.基于密集流动地震台网资料研究古冶—滦县地区上地壳各向异性[J].地球物理学报,2024,67(3):1 053-1 068.
盛书中,万永革,蒋长胜,等. 2015年尼泊尔MS 8.1强震对中国大陆静态应力触发影响的初探[J]. 地球物理学报,2015,58(5):1 834-1 842,doi:10.6038/cjg20150534.
唐杰,张素欣,冯向东,等. 2020年唐山5.1级地震发震背景分析[J]. 地震,2023,43(4):37-49.
万永革.震源机制水平应变花面应变的地震震源机制分类方法及序列震源机制总体特征分析[J].地球科学,2024,49(7):2 675-2 684.
万永革,黄少华,王福昌,等. 2022年门源地震序列揭示的断层几何形状及滑动特性[J]. 地球物理学报,2023,66(7):2 796-2 810.
万永革,沈正康,刁桂苓, 等. 利用小震分布和区域应力场确定大震断层面参数方法研究及其在唐山地震序列中的应用[J]. 地球物理学报, 2008,51(3): 793-804.
王想,周依,陈婷,等. 2020年7月12日唐山5.1级地震分析[J]. 地震工程学报,2021,43(6):1 280-1 287.
王晓山,冯向东,赵英萍. 京津冀地区地壳应力场特征[J]. 地震研究,2020,43(4):610-619.
徐志国,梁姗姗,郭铁龙,等. 2020年7月12日唐山古冶MS 5.1地震震源参数[J]. 地震地磁观测与研究,2021,42(3):25-33.
严少鹏,万永革. 2020年唐山古冶M 5.1地震震源区小震震源机制和应力场的求解[J/OL]. 地震,2024,1-15. [2024-08-20]. http://kns.cnki.net/kcms/detail/11.1893.P.20240613.1634.002.html.
余海琳. 基于密集台阵的古冶-滦县地区中等地震发震构造研究[D]. 廊坊:防灾科技学院,2023.
岳汉,张勇,盖增喜,等. 大地震震源破裂模型:从快速响应到联合反演的技术进展及展望[J]. 中国科学:地球科学,2020,50(4):515-537.
张苏祥,盛书中,席彪,等. 基于改进的DBSCAN算法自动识别断层方法研究及其在唐山地区的应用[J]. 地震地质,2022,44(6):1 615-1 633.
朱琳,李腾飞,石富强,等. 1976年唐山强震群震后库仑应力演化及其与2020年古冶5.1级地震的关系[J]. 地震研究,2021,44(1):1-8.
Gustafson D E, Kessel W C. Fuzzy clustering with a fuzzy covariance matrix[C]//Proceedings of the 1978 IEEEConference on Decision and Control including the 17th Symposium on Adaptive Processes. San Diego: IEEE, 1979: 761-766.
Jin Z T, Liu J L, Wan Y G, et al. Causes of the discordance in the south-north distribution of the 2017 Jiuzhaigou earthquake sequences[J]. Applied Geophysics, 2023, 20(2): 225-238.
Lee J, Tsai V C, Hirth G, et al. Fault-network geometry influences earthquake frictional behaviour[J]. Nature, 2024, 631(8 019): 106-110.
Wan Y G, Sheng S Z, Huang J C, et al. The grid search algorithm of tectonic stress tensor based on focal mechanism data and its application in the boundary zone of China, Vietnam and Laos[J]. Journal of Earth Science, 2016, 27(5): 777-785.
Wang R J, Lorenzo-Martín F, Roth F. PSGRN/PSCMP—a new code for calculating co-and post-seismic deformation, geoid and gravity changes based on the viscoelastic-gravitational dislocation theory[J]. Computers& Geosciences, 2006, 32(4): 527-541.
Wells D L, Coppersmith K J. New empirical relationships among magnitude, rupture length, rupture width, rupture area, and surface displacement[J]. Bulletin of the Seismological Society of America, 1994, 84(4): 974-1 002.
Wessel P, Smith W H F. New, improved version of generic mapping tools released[J]. EOS, Transactions American Geophysical Union, 1998, 79(47): 579.
Ziv A, Rubin A M. Static stress transfer and earthquake triggering: no lower threshold in sight?[J]. Journal of Geophysical Research: Solid Earth, 2000, 105(B6): 13 631-13 642.