为深入研究沙尘暴天气对测震台站环境背景噪声的影响,提升当地测震台站观测质量,以2021年3月14日17时至次日20时阿拉善盟沙尘暴事件为例,选取内蒙古自治区西部地区2个地表观测台站以及2个山洞观测台站记录,截取此次沙尘暴事件与晴好天气下各24小时连续波形数据,采用Welch方法来计算噪声速度均方根RMS、加速度功率谱密度PSD值,分析沙尘暴事件对测震台站环境背景噪声水平的干扰特征。结果表明:①在0.1 Hz以下、2—4 Hz及10—20 Hz频段,沙尘暴天气对测震台站环境噪声干扰显著,其中快速降温干扰分布在0.1 Hz以下频段,大风干扰分布在2—4 Hz频段,而扬尘与浮沙天气干扰分布在10—20 Hz频段,且在地表观测台站(WLJ、EKH台),表现为台阶式特征。②温度变化可能是影响地震计长周期信号的主要原因,沙尘暴天气过程中的快速降温,对0.1 Hz以下频段造成显著影响。③恒温恒湿、防风效果良好的观测山洞,受沙尘暴天气影响较小,可以显著降低环境干扰事件对地震观测数据质量的影响。
In order to further study the impact of sandstorm weather on the background noise of seismic stations, and improve observation quality, we take the sandstorm event in Alashan League from 17:00 on March 14, 2021 to 20:00 on the next day as an example. We select data from 2 surface observation stations and 2 cave observation stations in the western part of the Nei Monggol. We capture 24-hour continuous waveform of this sandstorm event and sunny weather, using the Welch method to calculate the root mean square RMS and power spectral density PSD values. This analysis reveals the characteristics of interference caused by sandstorms on the ambient noise levels of seismic stations. The results show that:①In frequency bands below 0.1 Hz, 2-4 Hz, and 10-20 Hz, sandstorm weather has significant interference on the ambient noise of seismic stations. Specifically, rapid cooling is distributed in the frequence band below 0.1 Hz, the strong winds is distributed in the frequence band 2-4 Hz band, and dust and sand storms is distributed in the frequence band 10-20 Hz band. In the surface observation stations (WLJ, EKH), it shows the stepped characteristics. ② Temperature change are likely the primary factor affecting long-period seismic signals. The rapid cooling during sandstorms significantly impacts the 0.1 Hz frequency band.③ Observation caves with good constant temperature and humidity and wind protection effect are less affected by sandstorms, which can significantly reduce the impact of environmental disturbance events on the quality of seismic observation data.
2024,45(6): 129-136
DOI:10.3969/j.issn.1003-3246.2024.06.014
基金项目:内蒙古自治区地震局局长基金课题(项目编号:2024QN16)
作者简介:苏世兵(1996—),男,助理工程师,主要从事地震监测相关工作。E-mail:sushibinglnnu@163.com
参考文献:
安全,韩晓明,包文超,等. 内蒙古地区强震动台站背景噪声与数据质量分析[J]. 地震学报,2024,46(3):490-501.
安全,赵艳红,苏日亚,等. 内蒙古区域背景噪声特征分析[J]. 华北地震科学,2021,39(1):89-96.
包文超,胡玮,申影,等. 内蒙古基准站噪声特征与监测能力[J]. 华北地震科学,2024,42(2):94-101.
蔡辉腾,陈颙,金星,等. 福建地区环境噪声特性研究[J]. 地震研究,2019,42(1):64-71.
丁可. 阿拉善盟一次区域性强沙尘暴天气过程成因分析[J]. 农业灾害研究,2022,12(8):143-145.
段昊,安全,海峰,等. 乌加河地震台、乌力吉地震台台基噪声特征对比分析[J]. 地震地磁观测与研究,2022,43(4):87-94.
葛洪魁,陈海潮,欧阳飚,等. 流动地震观测背景噪声的台基响应[J]. 地球物理学报,2013,56(3):857-868.
郭延杰,安全,包莹,等. 内蒙古东部预警基准站同台测震与强震背景噪声特征[J]. 大地测量与地球动力学,2023,43(7):761-766.
梁向军,董春丽,张蕙. 基于“十五”测震分析处理软件MSDP的多种地震定位方法[J]. 地震地磁观测与研究,2012,33(Z1):318-323.
王晓蕾. 温度对甚宽频地震计的性能及输出影响的研究[D]. 北京:中国地震局地震预测研究所,2012.
徐建权,孟令升,贾军,等. 黑龙江省测震台站背景噪声及动态范围分析[J]. 地震地磁观测与研究,2023,44(5):65-73.
杨亚运,汪建,傅卓,等. 台基观测方式对地震台站背景噪声影响分析[J]. 地震科学进展,2023,53(6):241-250.
Holcomb L G, Sandoval L, Hutt B. Reducing horizontal long period noise in boreholes with sand[R]. Poster Session Abstract (IRIS Workshop), 1997, (6): 8-12.
McNamara D E, Buland R P. Ambient noise levels in the continental United States[J]. Bull Seismol Soc Am, 2004, 94(4): 1 517-1 527.
Peterson J. Observation and Modeling of Seismic Background Noise[R]. USGS Open File Report, 1993, 18(12): 93-322.
Welch P. The use of fast Fourier transform for the estimation of power spectra:A method based on time averaging over short,modified periodograms[J]. IEEE Trans Audio Electroacoust, 1967, 15(2): 70-73.
Wilson D, Leon J, Aster R, et al. Broadband seismic background noise at temporary seismic stations observed on a regional scale in the southwestern United States[J]. Bull Seismol Soc Am, 2002, 92(8): 3 335-3 342.