地电场优势方位角和小震震源机制解均可反映区域应力场方向变化,本文以2017年8月8日四川九寨沟MS 7.0地震为例,采用大地电场潮汐波岩体裂隙水(电荷)渗流(移动)模型,选取2017年震中300 km范围内5个地电场台站记录数据,计算其优势方位角,并收集研究区2010—2018年发生的1 294个M≥3.0中小地震的震源机制解,通过区域应力张量阻尼反演方法进行区域应力场反演,对比分析地电场优势方位角异常和区域应力场时空变化的相关性。研究结果表明:在此次MS 7.0地震发生前,汉王、玛曲、成都和天水地震台大地电场优势方位角均具有变化范围明显变小、增大及阶变等现象;该区域小震震源机制解在震前表现出较好的一致性,而震后则一致性较差,即小震震源机制一致性异常在时间上与地电场优势方位角异常具有较高的一致性。该研究结果对于提升地电场优势方位角异常判断的可靠性具有一定促进作用。
Since both the dominant azimuth of the geoelectric field and the focal mechanism solution of small earthquakes can reflect the direction change of the regional stress field, this paper uses the seepage (movement) model of the geoelectric field tidal wave rock fissure water (charge) to calculate the dominant azimuth of the electric field observation data within 300 km before the 2017 Jiuzhaigou MS 7.0 earthquake in Sichuan, collects the focal mechanism solutions of small and medium-sized earthquakes in the same period in the study area to invert for the regional stress field by the regional stress tensor damping inversion method. The spatial and temporal variation characteristics of the regional stress field inverted by the dominant azimuth anomaly of the geoelectric field and the focal mechanism solution are compared and analyzed. The research results show that before the 2017 Jiuzhaigou MS 7.0 earthquake in Sichuan, the dominant azimuth angle of the electric field in Hanwang, Maqu, Chengdu, and Tianshuitai showed significant changes such as a smaller range, an increase, and a step change. At the same time, the focal mechanism solution of small earthquakes in the study region showed good consistency before the Jiuzhaigou earthquake, but poor consistency afterward. That is, the consistency anomaly of the focal mechanism solution of small earthquakes is consistent with the dominant azimuth anomaly of the geoelectric field in time. This research result has a certain promoting effect on the reliability improvement of the dominant azimuth anomaly of the geoelectric field.
2025,46(1): 78-84 收稿日期:2024-2-7
DOI:10.3969/j.issn.1003-3246.2025.01.011
基金项目:地震科技星火计划(项目编号:XH24017YC);震情跟踪定向工作任务(项目编号:2023010406)
作者简介:鲍海英(1986—),女,硕士,高级工程师,主要从事地震监测预报工作。E-mail:bhy5928@163.com
参考文献:
崔效锋,谢富仁,张红艳. 川滇地区现代构造应力场分区及动力学意义[J]. 地震学报,2006,28(5):451-461.
陈颙,黄庭芳,刘恩儒. 岩石物理学. 合肥:中国科学技术大学出版社,2009,6-131.
杜兴信,邵辉成. 由震源机制解反演中国大陆现代构造应力场[J]. 地震学报,1999,21(4):354-360.
康英,杨选,陈杏,等. 广东及邻区的应力场反演[J]. 地震学报,2008,30(1):59-66.
李瑞莎,崔效锋,刁桂苓,等. 华北北部地区现今应力场时空变化特征研究[J]. 地震学报,2008,30(6):570-580.
李金,王琼. 2014年2月12日于田7.3级地震序列震源机制特征分析[J].中国地震,2015,31(1):110-120.
刘泽民,刘东旺,李玲利,等. 利用多个震源机制解求东大别地区平均应力场[J]. 地震学报,2011,33(5):605-613.
孙业君,刘红桂,江昊琳,等. 江苏南部地区现今震源机制和应力场特征[J]. 地震研究,2015a,38(2):203-210.
孙业君,黄耘,江昊琳,等. 茅山断裂带及邻区地震震源机制解计算及应力场反演[J]. 中国地震,2015b,31(4):605-615.
谭大诚,赵家骝,席继楼,等. 潮汐地电场特征及机理研究[J]. 地球物理学报,2010,53(3):544-555.
谭大诚,王兰炜,赵家骝,等. 潮汐地电场谐波和各向波形的影响要素[J]. 地球物理学报,2011,54(7):1 842-1 853.
谭大诚,赵家骝,刘小凤,等. 自然电场的区域性变化特征[J]. 地球物理学报,2014,57(5):1 588-1 598.
谭大诚,辛建村,王建军,等. 大地电场岩体裂隙模型的应用基础与震例解析[J]. 地球物理学报,2019,62(2):558-571.
汤吉,詹艳,王立凤,等. 汶川地震强余震的电磁同震效应[J]. 地球物理学报,2010,53(3):526-534.
滕吉文. 强烈地震孕育与发生的地点、时间及强度预测的思考与探讨[J]. 地球物理学报,2010,53(8):1 749-1 766.
许忠淮. 用滑动方向拟合法反演唐山余震区的平均应力场[J]. 地震学报,1985,7(4):349-362.
辛建村,张晨蕾.漾濞县MS 6.4、玛多县MS 7.4地震前地电场变化分析[J].地震工程学报,2021,43(4):818-825.
张红艳,谢富仁,崔效锋,等. 北天山中东段活动断层滑动与现代构造应力场[J]. 中国地震,2014,30(1):13-22.
张致伟,阮祥,王晓山,等. 汶川、芦山地震前后四川地区应力场时空演化[J]. 地震,2015,35(4):136-146.
赵国泽,陈小斌,肖骑彬,等. 汶川MS 8.0级地震成因三“层次”分析——基于深部电性结构[J]. 地球物理学报,2009,52(2):553-563.
赵玉红,李霞,冯丽丽,等. 芦山MS 7.0、玛多MS 7.4地震前大地电场异常变化特征[J]. 地震地磁观测与研究,2021,42(Z1):86-89.
中国地震局监测预报司. 地震电磁分析预测技术方法工作手册[M]. 北京:地震出版社,2020.
钟继茂,程万正. 由多个地震震源机制解求川滇地区平均应力场方向[J]. 地震学报,2006,28(4):337-346.
Angelier J. Determination of the mean principal directions of stresses for a given fault population[J]. Tectonophysics, 1979, 56(3/4): T17-T26.
Lu Z, Wyss M, Pulpan H. Details of stress directions in the Alaska subduction zone from fault plane solutions[J]. J Geophys Res, 1997, 102(B3): 5 383-5 402.
Gephart J W, Forsyth D W. An improved method for determining the regional stress tensor usingearthquake focal mechanism data: application to the San Fernando earthquake sequence[J]. Journal of Geophysical Research: Solid Earth, 1984, 89(B11): 9 305-9 320.
Gephart J W. FMSI: a Fortran program for inverting fault/slickenside and earthquake focal mechanism data to obtain the regional stress tensor[J]. Computer& Geosciences, 1990, 16(7): 953-989.
Huang Q H. Rethinking earthquake-related DC-ULF electromagnetic phenomena: towards a physics-based approach[J]. Nat Hazards Earth Syst Sci, 2011, 11(11): 2 941-2 949.
Michael A J. Determination of stress from slip data: faults and folds[J]. Journal of Geophysical Research: Solid Earth, 1984, 89(B13): 11 517-11 526.
Michael A J. Stress rotation during the Coalinga aftershock sequence[J]. Journal of Geophysical Research: Solid Earth, 1987a, 92(B8): 7 963-7 979.
Michael A J. Use of focal mechanisms to determine stress: a control study[J]. Journal of Geophysical Research: Solid Earth, 1987b, 92(B1): 357-368.
Michael A J. Spatial variations in stress within the 1987 Whittier Narrows, California, aftershock sequence: new techniques and results[J]. Journal of Geophysical Research: Solid Earth, 1991, 96(B4): 6 303-6 319.