夏县热水区地处中条山山前断裂,采集该区5个地下热水井样品,测试其地球化学成分及氢氧同位素组成,获得该区域水文地球化学特征,以期深化对该区温泉地球化学成因以及断裂带地震活动性的认识,为山西南部震情跟踪、流体异常核实和地震研判提供依据。研究结果显示,该热水区水化学类型主要为Cl-Na型,属中低温微咸热水。分析5个热水井样品离子相关性比值γNa+/γCl-、γCl- /γCa2+、γCl-/(γCO3 2-+γHCO3-),确定各热水井的循环速度,其中:南山底半热水(NSD2)井水循环动力较强,浓缩程度较小,与冷水层交替程度较快,其余热水井循环速度由快到慢依次为中心站(ZXZ)、电力宾馆(DLBG)、南山底热水(NSD1)、温泉(WQJD)。利用同位素数据计算地下热水循环深度,并对夏县热水区热水成因进行分析,结果显示在独特构造部位和良好储水条件下,由大气降水经深循环、大地热流(地热增温)和岩石生热等作用加热,通过水—岩反应,在上升到地表的过程中与浅层地下冷水混合,并沿断裂上升出露地表,形成矿化度较高的温泉水;中心站热水井(ZXZ)开采量减少,地下水经深循环上升至地表过程中,与浅层地下冷水混合比例变大,导致其较周边热水井矿化度低、水温低,而水循环动力增强。
The geochemical composition and hydrogen and oxygen isotope composition of 5 underground hot water wells in the Xiaxian hot water area of the Zhongtiao Mountain front fault were measured. The results show that the hydrochemical type of Xiaxian hot water area is mainly Cl-Na, which belongs to medium-low temperature brackish hot water. The analysis of the ion correlation ratio γNa+/γCl-, γCl-/γCa2+, γCl-/(γCO32-+ γHCO3-) values shows that the water circulation of the five hot water wells in the Xiaxian hot spring area is relatively quick. The water circulation power of the Nanshan Bottom Semi-Hot Water (NSD2) well is the strongest, the concentration degree is the smallest, and the degree of alternations with the cold water layer is the fastest, followed by Central Station (ZXZ), Electric Hotel (DLBG), Nanshan Bottom Hot Water (NSD1), and Hot spring (WQJD). The isotope data was used to analyze the depth of underground hot water circulation. The results showed that the origin of hot water in the Xiaxian hot water area was that under the unique structural position and good water storage conditions, the precipitation was heated by deep circulation, terrestrial heat flow (geothermal warming), and rock heat generation, and then mixed with shallow underground cold water in the process of rising to the surface through water-rock reaction, and then rose to the surface along the fault, forming hot spring water with high salinity. It is analyzed that the hot water well in the central station has lower salinity, lower water temperature, and stronger water circulation power than the nearby hot water wells, which is caused by the decrease inits mining volume and the increasing mixing ratio of groundwater with shallow underground cold water during the process of rising to the surface through deep circulation.
2025,46(1): 137-146 收稿日期:2024-7-8
DOI:10.3969/j.issn.1003-3246.2025.01.019
基金项目:震情跟踪定向工作任务(项目编号:2024010309);山西省地震局重点重点科研项目(项目编号:SBK-2526);中国地震局监测、预报、科研三结合课题(项目编号:3JH-202402012);山西省地震局创新团队项目:山西南部区域中短期异常与地震趋势判定研究
作者简介:常姣(1988—),女,工程师,主要从事地球物理场监测与分析工作。E-mail:495066985@qq.com
*通讯作者:杨静(1986—),女,高级工程师,主要从事地球物理场监测与分析工作。E-mail:jingjing_yj@126.com
参考文献:
鲍志诚,查小惠,高小其,等. 江西九江2号井地震水文地球化学特征及成因[J].地震工程学报,2022,44(4):920-928.
程绍平,杨桂枝. 山西中条山断裂带的晚第四纪分段模型[J].地震地质,2002,24(3):289-302.
常姣,张磊,黄春玲,等. 山西夏县热水井氢氧稳定同位素动态特征及成因[J].华北地震科学,2023,41(2):69-74.
车用太,刘五洲,鱼金子. 地壳流体与地震活动关系及其在强震预测中的意义[J].地震地质,1998,20(4):431-436.
车用太,鱼金子,王基华,等. 地震地下流体学[M].北京:气象出版社,2006.
杜建国,康春丽. 强地震前兆异常特征与深部流体作用探讨[J].地震,2000,20(3):95-101.
范雪芳,郭君杰,米秋霞. 山西临猗—永济5.0级地震前的地下流体异常[J].山西地震,2000,(2):31-33.
付云霞,孙吉林,徐锐,等. 即墨温泉地热区水文地球化学特征及成因机制[J].海洋地质前沿,2021,37(9):25-35.
郝永河. 阿克苏地区地下水化学特征及其形成原因分析[D].阿拉尔:塔里木大学,2010.
李营,陈志,胡乐,等. 流体地球化学进展及其在地震预测研究中的应用[J]. 科学通报,2022,67(13):1 404-1 420.
刘耀炜. 我国地震地下流体科学40年探索历程回顾[J].中国地震,2006,22(3):222-235.
刘耀炜,任宏微,张磊,等. 鲁甸6.5级地震地下流体典型异常与前兆机理分析[J].地震地质,2015,37(1):307-318.
苗德雨,李有利,吕胜华,等.山西中条山北麓断裂夏县段新构造运动[J].地理研究,2014,33(4):665-673.
穆慧敏,黄春玲,常姣,等.山西省4口井(泉)水化学特征与水氡映震效能研究[J].中国地震,2019,35(4):654-665.
沈照理,朱宛华,钟佐燊,等.水文地球化学基础[M]. 北京:地质出版社,1993:88.
施得旸,刘耀炜. 地下流体在地震孕育中的主要作用与流体前兆形成机制研究进展[J].中国地震,2023,39(3):453-471.
苏春田,聂发运,邹胜章,等.湖南新田富锶地下水水化学特征与成因分析[J].现代地质,2018,32(3):554-564.
温煜华,王乃昂,朱锡芬,等.天水及其南北地区地热水水化学特征及起源[J].地理科学,2011,31(6):668-673.
杨静,李冬梅,常姣,等. 山西夏县中心地震台温泉水化学特征[J].地震地磁观测与研究,2019a,40(4):114-119.
杨静,常姣,李民,等. 山西夏县中心地震台水化学观测地质环境概述[J].山西科技,2019b,34(1):48-51.
汪集旸,熊亮萍,庞忠和. 中低温对流型地热系统[M].北京:科学出版社,1993.
王兴,李王成,董亚萍,等. 西安地区降水稳定同位素变化特征及影响因素[J].人民黄河,2020,42(1):77-81.
吴红梅,周立岱,郭宇.阳离子温标在中低温地热中的应用研究[J].黑龙江科技学院学报,2006,16(1):27-30.
肖琼,沈立成,袁道先,等. 重庆北温泉水化学特征对汶川8.0级地震的响应[J].中国岩溶,2009,28(4):385-390.
章光新,邓伟,何岩,等. 中国东北松嫩平原地下水水化学特征与演变规律[J].水科学进展,2006,17(1):20-28.
张磊,刘耀炜,孙小龙,等.基于水化学和物理方法的井水位异常分析[J].地震地质,2014,36(2):513-522.
张人权,梁杏,靳孟贵,等. 水文地质学基础[M].北京:地质出版社,2018:58-59.
周晓成,杜建国,陈志,等. 地震地球化学研究进展[J].矿物岩石地球化学通报,2012,31(4):340-346.
周训,金晓媚,梁四海,等. 地下水科学专论[M]. 北京:地质出版社,2017.
左海风.浅层测温在夏县南山底地热研究中的应用[J].华北地质矿产杂志,1998,13(2):170-177.
Craig H. Isotopic variations in meteoric waters[J]. Science, 1961, 133(3 465): 1 702-1 703.
Dadomo A, Lemmi M, Martinelli G, et al. Springwater continuous monitoring in the L’Aquila area in concomitance with the April 2009 seismic swarm in central Italy: constraining factors to possible deep-seated fluid emissions[J]. Chemical Geology, 2013, 339: 169-176.
Favara R, Grassa F, Inguagggiatos, et al. Hydrogeochemistry and stable isotopes of thermal springs: earthquake-related chemical changes along Belice Fault (Western Sicily) [J]. Applied Geochemistry, 2001,16(1): 1-17.
Giggenbach WF.Geothermal solute equilibria. Derivation of Na-K-Mg-Ca geoindicators [J].Geochim CosmochimActa, 1988, 52(12): 2 749-2 765.
Inan S, Balderer W P, Leuenberger-West F, et al. Springwater chemical anomalies prior to the MW 7.2 Van earthquake(Turkey)[J]. Geochemical Journal, 2012, 46(1): e11- e16.
Italiano F, Bonfanti P, Pizzino L, et al. Geochemistry of fluids discharged over the seismic area of the Southern Apennines (Calabria region, Southern Italy): Implications for Fluid-Fault relationships[J]. Applied Geochemistry, 2010, 25(4): 540-554.
Li C H, Zhou X C, Yan Y C, etal. Hydrogeochemical characteristics of hot springs and their short-term seismic precursor anomalies along the Xiaojiang Fault Zone, Southeast Tibet Plateau[J]. Water, 2021, 13(19): 2 638.
Pang ZH, Kong YL, Li J, et al. An isotopic geoindicator in the hydrological cycle[J]. Procedia Earth and Planetary Science, 2017, 17: 534-537.
Reddy D V, Nagabhushanam P, Sukhija B S. Earthquake (M 5.1) induced hydrogeochemical and δ18O changes: validation of aquifer breaching-mixing model in Koyna, India[J]. Geophysical Journal International, 2011, 184(1): 359-370.
Rigo A. Precursors and fluid flows in the case of the 1996 ML = 5.2 Saint-Paul-de-Fenouillet earthquake (Pyrenees, France): A com-plete pre-, co-and post-seismic scenario[J]. Tectonophysics, 2010, 480(1/4): 109-118.
Wang B, Zhou X C, Zhou Y S, et al. Hydrogeochemistry and precursory anomalies in thermal springs of Fujian (southeastern China) associated with earthquakes in the Taiwan strait[J]. Water, 2021, 13(24): 3 523.
Woith H, Wang R J, Maiwald U, et al. On the origin of geochemical anomalies in groundwaters induced by the Adana 1998 earthquake[J]. Chemical Geology, 2013, 339: 177-186.
Wu Y Q, Zhou X, Wang M M, et al. Comparison of hydrogeological characteristics and genesis of the Xiaguan Hot Spring and the Butterfly Spring in Yunnan of China[J]. Journal of Hydrology, 2021, 593: 125922.
Wang B, Zhou X C, Li J C. Hydrogeochemical and geothermal features of thermal springs along the Ganzi-Yushu fault, eastern Tibetan Plateau and its geological implications[J]. Applied Geochemistry, 2024, 161: 105898.
Yan Y C, Zhou X C, Liao L X, et al. Hydrogeochemical characteristic of geothermal water and precursory anomalies along the Xianshuihe Fault Zone, Southwestern China[J]. Water, 2022, 14(4): 550.
Zhou Z H, Tian L, Zhao J, et al. Stress-related pre-seismic water radon concentration variations in the Panjin Observation Well, China(1994-2020)[J]. Frontiers in Earth Science, 2020, 8: 596283.
Zhou Z H, Zhong J, Zhao J, et al. Two mechanisms of earthquake-in-duced hydrochemical variations in an observation well[J]. Water, 2021, 13(17): 2 385.